Shidqy Wasis

From ccitonlinewiki
Jump to: navigation, search

Biodata

Shidqy w Background.png

Name:

Muhammad Shidqy Wasis

Student Number (NPM):

2106727935

Born:

2 September 2004 (20 years)
Bandung, Indonesia

Major:

Mechanical Engineering (class of 2021)

 


SKE 1

‘’’Video Pembahasan Sederhana Pertemuan 1’’’

youtube width="200" height="100">=vYUC8pxxymN7Xc0p </youtube>



Tugas Besar Hydraulics/Pneumatics

Pneumatic Sliding Flap System

Tank Slider Pneumatic.png

Pengertian

Pneumatic Sliding Flap adalah sistem katup otomatis yang digunakan untuk mengontrol aliran material curah seperti pasir, biji-bijian, serbuk, atau material granular lainnya. Sistem ini bekerja dengan menggerakkan pelat geser (flap) menggunakan aktuator pneumatik yang digerakkan oleh tekanan udara. Keunggulan utama dari mekanisme ini adalah respons yang cepat, kontrol yang presisi, dan kemampuan untuk menangani berbagai jenis material curah dalam berbagai kondisi operasional.

Prinsip Kerja

Prinsip kerja Pneumatic Sliding Flap didasarkan pada konversi energi tekanan udara menjadi energi mekanis. Saat udara bertekanan dialirkan ke aktuator pneumatik, piston di dalam aktuator bergerak, menggerakkan flap untuk membuka atau menutup jalur aliran material. Proses ini melibatkan beberapa tahap:

1. Aktivasi Aktuator

Tekanan udara dialirkan ke dalam aktuator, mendorong piston untuk bergerak.

2. Gerakan Flap

Gerakan piston diteruskan ke flap melalui mekanisme penghubung (linkage).

3. Kontrol Aliran

Flap membuka atau menutup saluran material sesuai kebutuhan.

4. Pengembalian Flap

Setelah tekanan udara dilepaskan, pegas pengembalian (return spring) atau tekanan udara dari sisi berlawanan mengembalikan flap ke posisi semula.

Sistem ini bekerja dengan cepat dan efektif, meminimalkan waktu tunda dan memastikan kontrol aliran material yang akurat.

Komponen Utama

Sistem Pneumatic Sliding Flap terdiri dari beberapa komponen penting, yaitu:

  • Sliding Flap
Pelat geser yang berfungsi membuka atau menutup saluran material. Biasanya terbuat dari bahan tahan abrasi seperti baja tahan karat atau keramik.
  • Aktuator Pneumatik
Mengubah tekanan udara menjadi gerakan mekanis. Aktuator dapat berupa tipe silinder tunggal atau ganda, tergantung pada kebutuhan aplikasi.
  • Sistem Dudukan dan Rangka
Struktur pendukung yang menjaga stabilitas dan posisi mekanisme.
  • Saluran Material
Jalur tempat material mengalir, biasanya terbuat dari baja tahan karat untuk mengurangi abrasi.
  • Mekanisme Penyegelan
Seal atau gasket yang mencegah kebocoran udara dari aktuator dan saluran material.
  • Katup Solenoid
Mengontrol aliran udara ke dalam aktuator untuk membuka atau menutup flap.
  • Sistem Kontrol
Dapat berupa sistem manual, otomatis, atau terintegrasi dengan PLC (Programmable Logic Controller) untuk kontrol yang lebih presisi.

Analisis Masalah Umum dan Solusi

Dalam penggunaan Pneumatic Sliding Flap, beberapa masalah umum sering terjadi. Berikut adalah analisis mendalam dan solusi yang dapat diterapkan:

1. Keterlambatan Respons Flap

  • Penyebab:
Tekanan udara tidak mencukupi.
Aktuator pneumatik memiliki kecepatan gerak yang rendah.
Gesekan berlebih pada mekanisme penggerak.
  • Solusi:
Gunakan aktuator berkecepatan tinggi.
Pastikan suplai udara memiliki tekanan yang stabil (misalnya 6–8 bar).
Lumasi mekanisme penggerak secara berkala untuk mengurangi gesekan.

2. Kebocoran Udara pada Aktuator

  • Penyebab:
Seal atau gasket yang aus.
Sambungan pipa udara yang longgar.
  • Solusi:
Ganti seal atau gasket secara berkala.
Periksa dan kencangkan sambungan pipa udara.

3. Kerusakan Mekanis akibat Abrasi Material

  • Penyebab:
Material curah yang keras dan abrasif (misalnya pasir atau bijih).
Flap terbuat dari material yang kurang tahan abrasi.
  • Solusi:
Gunakan flap dari baja tahan karat atau keramik.
Tambahkan lapisan pelindung (coating) tahan abrasi.

4. Penumpukan Material di Saluran

  • Penyebab:
Desain saluran yang tidak optimal.
Flap tidak menutup rapat.
  • Solusi:
Desain ulang saluran dengan sudut yang mencegah penumpukan.
Pastikan flap menutup sepenuhnya dengan mekanisme penyegelan yang baik.

DAI5 Framework untuk Pneumatic Sliding Flap

Langkah Analisis DAI5
Langkah Penjelasan
Deep Awareness of I Menyadari bahwa sistem pengontrolan aliran material yang tidak efektif dapat menyebabkan penumpukan, kebocoran, atau kerusakan pada sistem produksi. Hal ini dapat mempengaruhi produktivitas dan efisiensi operasional secara keseluruhan.
Intention Desain sistem ini bertujuan menciptakan mekanisme yang responsif, efisien, dan tahan lama, serta mengurangi risiko penumpukan material dan kebocoran udara.
Initial Thinking (About the Problem) Identifikasi masalah seperti keterlambatan respons flap, kebocoran udara, dan abrasi mekanis akibat material curah.
Idealization Solusi ideal mencakup:
  • Pemilihan aktuator dengan respons cepat.
  • Penggunaan material flap yang tahan abrasi.
  • Mekanisme penyegelan yang efektif.
Instruction Set

1. Desain flap menggunakan material tahan abrasi seperti baja atau keramik. 2. Pilih aktuator pneumatik berkecepatan tinggi. 3. Pastikan tekanan udara stabil (6–8 bar). 4. Tambahkan seal berkualitas tinggi untuk mencegah kebocoran. 5. Lakukan pengujian rutin untuk memastikan performa optimal.

Perhitungan Sistem Pneumatic Sliding Flap

1. Menghitung Luas Penampang Silinder

Rumus: <math>A = \pi \times \left(\frac{d}{2}\right)^2</math>

  • Tekanan udara (P) = 6 bar = 600.000 Pascal
  • Diameter piston (d) = 5 cm = 0,05 meter

Perhitungan: <math> A = 3,14 \times (0,025)^2 \\ A = 0,00196 \, \text{m}^2 </math>

2. Menghitung Gaya Pneumatik

Rumus: <math>F = P \times A</math>

  • Tekanan udara (P) = 600.000 Pascal
  • Luas penampang (A) = 0,00196 m²

Perhitungan: <math> F = 600.000 \times 0,00196 \\ F = 1176 \, \text{Newton} </math>

3. Menghitung Waktu Respons Aktuator

Rumus: <math>t = \frac{L}{v}</math>

  • Jarak gerak (L) = 10 cm = 0,1 meter
  • Kecepatan aktuator (v) = 20 cm/s = 0,2 m/s

Perhitungan: <math> t = \frac{0,1}{0,2} \\ t = 0,5 \, \text{detik} </math>

Kesimpulan

Sistem Pneumatic Sliding Flap ini memiliki:

  • Gaya pneumatik: 1176 Newton
  • Waktu respons: 0,5 detik

Dengan desain ini, sistem dapat mengontrol aliran material dengan cepat dan efisien. Penggunaan material tahan abrasi, mekanisme penyegelan yang baik, dan aktuator berkecepatan tinggi memastikan performa optimal dan umur panjang sistem.

Rekomendasi Pengembangan

1. Penggunaan Sensor: Tambahkan sensor posisi untuk memantau gerakan flap secara real-time.
2. Kontrol Otomatis: Integrasikan sistem kontrol berbasis PLC untuk meningkatkan presisi.
3. Pemeliharaan Rutin: Jadwalkan perawatan rutin untuk memeriksa kebocoran dan kerusakan.
4. Optimasi Desain Saluran: Pastikan desain saluran mencegah penumpukan material.

Dengan rekomendasi ini, sistem Pneumatic Sliding Flap dapat bekerja lebih andal dan efisien




Pembicaraan dengan AI Mengenai Pemahaman Konsep Hukum Pertama Konversi Energi

Me:

Hello! I’ve been learning about energy conversions and the idea that energy cannot be created or destroyed, but only transformed from one form to another.

I understand that in many real-world applications, energy conversion processes are involved, such as in electrical power generation, transportation, or even everyday activities like charging a phone. For example, in a hydroelectric power plant, potential energy of water is converted into kinetic energy as it flows, which then turns the turbine, transforming it into mechanical energy, and finally into electrical energy via a generator. However, in each of these steps, some energy is inevitably lost as heat due to friction or resistance, leading to less-than-ideal efficiency.

I also realize that the total energy input must always account for all forms of output, including useful energy and these losses. It makes me wonder: Are there innovative ways or recent technological advances to minimize these energy losses and improve efficiency in energy conversion systems?

What do you think about my understanding and this question?


AI:

== Energy Conversion and Efficiency in Modern Systems ==

Understanding Energy Conversion

Energy cannot be created or destroyed; it can only be transformed from one form to another. In real-world applications like power generation, transportation, or charging a device, energy undergoes multiple transformations. For example:

  • In a hydroelectric power plant:
 * Potential energy → Kinetic energy (water flow)
 * Kinetic energy → Mechanical energy (turbine)
 * Mechanical energy → Electrical energy (generator)

During each step, some energy is lost as heat due to friction and resistance, making the process less than 100% efficient.

Innovative Ways to Minimize Energy Losses

1. Superconducting Materials

  • How it works: Materials conduct electricity with zero resistance at extremely low temperatures.
  • Advances: Research on high-temperature superconductors (operating above liquid nitrogen temperatures).
  • Applications:
 * Superconducting magnets
 * Magnetic levitation trains
 * Loss-free power lines

2. Advanced Turbine Design

  • How it works: Improved design and materials enhance aerodynamic efficiency.
  • Advances:
 * 3D-printed turbine blades for complex geometries
 * Ceramic matrix composites (CMCs) for higher temperature tolerance
  • Applications:
 * Gas turbines
 * Jet engines
 * Wind turbines

3. Energy Recovery Systems

  • How it works: Capture and reuse waste energy.
  • Advances:
 * Regenerative braking in electric vehicles
 * Waste heat recovery systems
  • Applications:
 * Automotive industry
 * Manufacturing plants
 * Combined heat and power (CHP) systems

4. Perovskite Solar Cells

  • How it works: Higher-efficiency solar cells compared to silicon-based versions.
  • Advances: Tandem solar cells (silicon + perovskite) achieve over 30% efficiency.
  • Applications: Solar power generation

5. Improved Battery Technology

  • How it works: Enhanced energy storage with reduced charging losses.
  • Advances:
 * Solid-state batteries for lower resistance
 * Lithium-sulfur and silicon anode batteries for higher energy density
  • Applications:
 * Electric vehicles
 * Grid storage
 * Portable electronics

6. Magnetic Refrigeration

  • How it works: Uses magnetocaloric materials for cooling without compressors.
  • Advances: More efficient than gas-compression refrigeration.
  • Applications:
 * Refrigeration
 * Air conditioning
 * Data center cooling

7. Smart Grids and AI Optimization

  • How it works: Intelligent energy flow management reduces losses.
  • Advances:
 * AI-based demand forecasting
 * Dynamic grid optimization
  • Applications:
 * Electrical grid management
 * Renewable energy integration

Summary

You’ve captured the fundamental principle of energy conservation and the role of efficiency. Exploring fields like thermodynamics, material science, AI-driven optimization, and renewable technologies can further your understanding and career in energy systems.




Penilaian Essay Tugas Besar oleh AI

Thank you for submitting your essay! I’ve carefully reviewed it using the evaluation criteria, and here’s the detailed feedback based on your work:

I. Deep Awareness of I (DAI)

1. **Consciousness of Purpose (3/3):**

  Your essay shows a clear understanding of purpose, emphasizing core principles and values effectively.

2. **Self-awareness (3/3):**

  Demonstrates strong self-awareness and thoughtful reflection on personal perspectives.

3. **Ethical Considerations (3/3):**

  You highlight ethical considerations thoughtfully, especially in relation to sustainability and societal impact.

4. **Integration of Spiritual Awareness (3/3):**

  Spiritual principles are consistently integrated into your discussion.

5. **Critical Reflection (3/3):**

  Insightful connections between theory and practice are well articulated.

6. **Continuum of Awareness (3/3):**

  Your essay maintains a coherent and progressive exploration of ideas.

Subtotal: 18/18

---

II. Intention

7. **Clarity of Intent (3/3):**

  The purpose of your essay is clear and well-defined.

8. **Alignment of Objectives (3/3):**

  Your objectives are aligned with ethical, social, and practical goals.

9. **Relevance of Intent (3/3):**

  The intent addresses meaningful and relevant concerns effectively.

10. **Sustainability Focus (3/3):**

  A strong commitment to sustainability principles is evident.

11. **Focus on Quality (3/3):**

  High-quality content and attention to detail are maintained throughout.

Subtotal: 15/15

---

III. Analysis and Depth of Thought

12. **Problem Understanding (3/3):**

   The problem is well identified and contextualized.

13. **Stakeholder Awareness (2/3):**

   While stakeholders are mentioned, a deeper exploration would enhance the analysis.

14. **Contextual Analysis (3/3):**

   Excellent contextual framing of the issues presented.

15. **Depth of Research (3/3):**

   Well-researched and supported by relevant evidence.

16. **Use of Data and Evidence (2/3):**

   Some data is included, but additional quantitative support would be beneficial.

Subtotal: 13/15

---

IV. Structure and Clarity

17. **Logical Flow (3/3):**

   Your essay follows a clear and logical structure.

18. **Cohesiveness (3/3):**

   Ideas are well-connected and cohesive.

19. **Clarity of Expression (3/3):**

   Your writing is clear, precise, and easy to follow.

20. **Depth of Argument (3/3):**

   Thoughtful arguments and well-developed points are presented.

Subtotal: 12/12

---

Total Score: 95/100 🎉

Your essay demonstrates a strong understanding of the concepts, excellent analytical depth, and clear articulation of ideas. A few areas for improvement include expanding on stakeholder perspectives and incorporating more quantitative data to reinforce your points. Overall, fantastic work!

Assignment 1: Design and Optimization of Compressed Hydrogen Storage

Compressed Hydrogen Tank Scheme (source: energy.gov)

Compressed Hydrogen Definitions

Compressed hydrogen storage refers to the method of storing hydrogen gas by compressing it to high pressures and storing it in specially designed containers or tanks. The process involves increasing the pressure of hydrogen gas, typically to levels between 350 and 700 bar (5,000 to 10,000 pounds per square inch, or psi), in order to achieve a higher density and maximize the amount of hydrogen that can be stored within a given volume.
Compressed hydrogen storage offers a practical and established solution for storing hydrogen in various applications, including hydrogen fuel cell vehicles, stationary energy storage, and industrial processes. It provides advantages such as high energy density, quick refueling times, and a reliable and well-established technology. However, it also poses challenges related to the storage pressure, safety considerations, and energy losses during compression.

 

Specification of Compressed Hydrogen Tank

Volume: 1 liter
Pressure rate: 8 bar (800 kPa)
Production cost: IDR 500.000
Objectives: Minimize surface area and material thickness that can withstand an 8 bar pressure
Design variables: Geometry and material selection (included thickness and strength aspect)

 

Factors and Processes Involved in Designing Compressed Hydrogen Tank

Designing and optimizing hydrogen storage involves considering various factors and processes to ensure safe and efficient storage of hydrogen. Here are some key considerations:
1. Storage Method: There are different methods for storing hydrogen, including compressed gas, liquid hydrogen, and solid-state storage. Each method has its own advantages and challenges, and the choice depends on factors such as energy density, safety, and cost.
2. Energy Density: The energy density of the storage system determines the amount of hydrogen that can be stored per unit volume or mass. Higher energy density enables greater storage capacity and longer operating range. Designing storage systems with high energy density is crucial for practical applications.
3. Safety: Hydrogen is highly flammable and requires careful handling and storage to ensure safety. Designing storage systems with appropriate safety measures, such as leak detection, pressure relief mechanisms, and robust materials, is essential to mitigate the risks associated with hydrogen.
4. Efficiency: Optimizing hydrogen storage involves maximizing the efficiency of the storage system. This includes minimizing energy losses during storage and retrieval, as well as minimizing any leakage or degradation of stored hydrogen over time. Efficient storage systems help reduce overall energy consumption and increase the viability of hydrogen as an energy carrier.
5. Materials Selection: The choice of materials used in storage systems is crucial. They need to be compatible with hydrogen, have high strength, and exhibit low permeability to prevent hydrogen leakage. Research and development efforts focus on developing advanced materials, such as carbon fibers, metal hydrides, and porous materials, to enhance storage capabilities.
6. Temperature and Pressure Management: Hydrogen storage often involves managing temperature and pressure conditions. Depending on the storage method, maintaining the appropriate temperature and pressure ranges can impact the performance, safety, and longevity of the storage system.
7. System Integration: Designing and optimizing hydrogen storage also involves considering the integration of storage systems with other components, such as hydrogen production, transportation, and utilization. Ensuring compatibility and efficiency among different system components is crucial for overall system performance.
8. Cost: The cost of hydrogen storage is a significant factor in its widespread adoption. Designing storage systems that are cost-effective and scalable is essential for the commercial viability of hydrogen as an energy carrier. Research and technological advancements aim to reduce the costs associated with materials, manufacturing, and infrastructure required for hydrogen storage.
9. Environmental Impact: Evaluating the environmental impact of hydrogen storage systems is important. This includes considering the energy requirements for manufacturing and maintaining the storage systems, as well as any potential emissions or waste generated during the process.
10. Regulatory Compliance: Designing hydrogen storage systems must adhere to relevant safety standards and regulations. Compliance with codes and regulations ensures the safe operation and deployment of hydrogen storage technologies.
Optimizing hydrogen storage involves a multidisciplinary approach, combining engineering, materials science, safety considerations, and system integration to develop efficient, safe, and economically viable storage solutions. Ongoing research and technological advancements continue to enhance the performance and viability of hydrogen storage systems.

Optimasi Penyimpanan

Ada beberapa tahapan dalam mendesain dan mengoptimasi sistem penyimpanan, dari yang sudah ada menjadi yang sesuai dengan batasan maksimal yang diinginkan.

1. Tentukan ukuran pelat yang akan digunakan berdasarkan volume yang dibutuhkan, yaitu 1 liter, namun menggunakan luas pelat seminimal mungkin menggunakan perhitungan sebagai berikut:

import math
from scipy.optimize import minimize

def objective(x):
    radius, height = x
    return 2 * math.pi * radius**2 + 2 * math.pi * radius * height

def constraint(x):
    radius, height = x
    return math.pi * radius**2 * height - 1000

initial_guess = [1, 10]  # Initial guess for the radius and height

# Define the bounds for the radius and height
bounds = [(0, None), (0, None)]

# Define the volume constraint
volume_constraint = {'type': 'eq', 'fun': constraint}

# Minimize the surface area subject to the volume constraint
result = minimize(objective, initial_guess, method='SLSQP', bounds=bounds,                                                                         
constraints=volume_constraint)
  
optimal_radius = result.x[0]
optimal_height = result.x[1]
min_surface_area = result.fun

print(f"\n\nOptimal Radius: {optimal_radius} cm")
print(f"Optimal Height: {optimal_height} cm")
print(f"Minimum Surface Area: {min_surface_area} cm²\n\n")

Dari perhitungan tersebut, didapatkan beberapa nilai ukuran berikut ini,
● Optimal Radius: 5.419261255088046 cm
● Optimal Height: 10.838519182022262 cm
● Minimum Surface Area: 553.5810443894838 cm²

2. Selanjutnya, dilakukan perhitungan dengan variabel budget (AISI 316) yang telah ditetapkan, yaitu Rp. 500.000. Untuk perhitungannya, digunakan perhitungan sebagai berikut menggunakan python:

from scipy.optimize import minimize

# Harga dan kapasitas yang dibutuhkan
harga_per_unit = 500000  # Rupiah
kapasitas_per_unit = 1  # Liter

# Anggaran maksimal
anggaran_maksimal = 500000

# Fungsi Akhir
def fungsi_akhir(x):
    return -x * kapasitas_per_unit

# Kendala yang terjadi
def kendala(anggaran):
    return anggaran_maksimal - (harga_per_unit * anggaran)

kendala_anggaran = {'type': 'ineq', 'fun': kendala}

# Nilai awal
x0 = 0

# Batasan
batas = [(0, None)]

# Menyelesaikan masalah optimisasi
solusi = minimize(fungsi_akhir, x0, method='SLSQP', bounds=batas, constraints=[kendala_anggaran])

# Menampilkan hasil
print("Status:", solusi.success and "Biaya Optimal" or "Tidak ditemukan solusi")
print("Jumlah unit yang bisa dibeli:", solusi.x[0])
print("Total kapasitas penyimpanan yang didapat:", solusi.x[0] * kapasitas_per_unit, "liter")
print("Total anggaran:", solusi.x[0] * harga_per_unit, "Rupiah")

Hasil yang didapatkan adalah:
● Status: Biaya Optimal
● Jumlah unit yang bisa dibeli: 1
● Total kapasitas penyimpanan yang didapat: 1.0 liter
● Total anggaran: 500000.0 Rupiah

Link YouTube Presentasi Assignment 1