Pradipa Anargya Ramadian

From ccitonlinewiki
Jump to: navigation, search

Biodata

Dipa depan UI.jpeg

Nama: Pradipa Anargya Ramadian

NPM: 2206031712

Program Studi: Teknik Mesin

إِنَّ فِي خَلْقِ السَّمَاوَاتِ وَالْأَرْضِ وَاخْتِلَافِ اللَّيْلِ وَالنَّهَارِ وَالْفُلْكِ الَّتِي تَجْرِي فِي الْبَحْرِ بِمَا يَنْفَعُ النَّاسَ وَمَا أَنْزَلَ اللَّهُ مِنَ السَّمَاءِ مِنْ مَاءٍ فَأَحْيَا بِهِ الْأَرْضَ بَعْدَ مَوْتِهَا وَبَثَّ فِيهَا مِنْ كُلِّ دَابَّةٍ وَتَصْرِيفِ الرِّيَاحِ وَالسَّحَابِ الْمُسَخَّرِ بَيْنَ السَّمَاءِ وَالْأَرْضِ لَآيَاتٍ لِقَوْمٍ يَعْقِلُونَ

"Sesungguhnya dalam penciptaan langit dan bumi, silih bergantinya malam dan siang, bahtera yang berlayar di laut membawa apa yang berguna bagi manusia, dan apa yang Allah turunkan dari langit berupa air, lalu dengan air itu Dia hidupkan bumi sesudah mati (kering)-nya dan Dia sebarkan di bumi itu segala jenis hewan, dan pengisaran angin dan awan yang dikendalikan antara langit dan bumi; sungguh (terdapat) tanda-tanda (keesaan dan kebesaran Allah) bagi kaum yang memikirkan."

Surat Al-Baqarah Ayat 164


Salam! Selamat Datang di Laman Saya

Perkenalkan saya Pradipa dari Departemen Teknik Mesin angkatan 2022. Saya akan menggunakan laman ini sebagai sarana pembelajaran framework DAI 5. Berikut saya cantumkan laman YouTube saya :

https://www.youtube.com/@pradipaanargya3262

Selamat Belajar~!

Sistem Konversi Energi

Review Pertemuan 1 SKE

Pokok bahasan : DAI5, Fluid Power System (Hidraulik & Pneumatik), Training ChatGPT.

Minggu 1 (18 November 2024)

Pendahuluan DAI 5 Framework:

No. Topik Penjelasan
1 Menjelaskan tentang DAI 5 DAI 5 adalah sebuah metode berpikir sadar untuk pemecahan masalah, yang meliputi langkah-langkah:
  • **Deep Awareness (of) I**
  • **Intention**
  • **Initial (thinking about the problem)**
  • **Idealization**
  • **Instruction (set)**

Framework ini digunakan untuk berbagai aplikasi, seperti pemecahan masalah pribadi, profesional, tim, dan kreatif.

2 Penjelasan Sistem Fluid Power menggunakan DAI 5
  • **Hidraulik**: Menggunakan cairan untuk menghasilkan tenaga besar dengan presisi. Cocok untuk aplikasi berat (misalnya excavator).
  • **Pneumatik**: Menggunakan udara bertekanan untuk menghasilkan gerakan cepat dan ringan. Cocok untuk aplikasi ringan (misalnya lini produksi otomatis).

Langkah-langkah DAI 5 diterapkan untuk memahami, menganalisis, dan mengoptimalkan sistem fluid power.

3 Rumus-rumus Penting Dibahas rumus-rumus dasar, seperti:
  • **Hukum Pascal**
  • **Perhitungan gaya, tekanan, daya, efisiensi**
  • **Hukum gas ideal**

Penjelasan tentang penggunaannya dalam desain dan analisis sistem hidraulik dan pneumatik.

4 Rekomendasi Buku
  • "Hydraulics and Pneumatics: A Technician's and Engineer's Guide" oleh Andrew Parr.
  • "Fundamentals of Pneumatics and Hydraulics" oleh Md. Abdus Salam.
  • "Pneumatic and Hydraulic Systems" oleh W. Bolton.
  • "Fluid Power: Hydraulics and Pneumatics" oleh James R. Daines dan Martha J. Daines.
  • "Introduction to Hydraulics and Pneumatics" oleh S. Ilango dan V. Soundararajan.

Minggu 4 (2 Desember 2024)

Penjelasan Rumus:

Topik Penjelasan
Rumus Euler (dE/dt = Wdot + Qdot) Merupakan rumus dasar konversi energi yang menunjukkan perubahan energi dalam sistem per waktu sebagai jumlah usaha (Wdot) dan kalor (Qdot).
Makna dari rumus Euler Perubahan energi per waktu setara dengan perubahan usaha dan kalor. Derivasi parsial juga dipertimbangkan untuk komponen ruang (x, y, z) dan waktu (t).
Pemahaman yang sudah dimiliki Pemahaman yang baik tentang konsep dasar konversi energi, serta pemahaman tentang usaha, kalor, dan penerapan derivasi parsial dalam analisis energi.
Skor Pemahaman Pemahaman Anda dinilai 8-9 dari 10, dengan potensi untuk mencapai skor 10 jika memperdalam aplikasi praktis dan model lanjutan.
Area yang dapat diperluas 1. Termodinamika lanjutan (hukum kedua termodinamika, entropi, siklus termodinamika).
2. Penerapan rumus Euler pada sistem energi nyata (mesin, turbin, energi terbarukan).
Pemahaman dengan skor 10 Pemahaman Anda sudah mencapai tingkat mendalam, dengan pemahaman tidak hanya dari teori, tetapi juga penerapannya dalam berbagai sistem nyata.
Kesimpulan Anda memiliki pemahaman yang sangat baik tentang rumus Euler dan konversi energi, dengan peluang untuk menggali lebih lanjut di area lanjutan.

Essay Tugas Besar - Sistem Steam Catapult pada Aircraft Carrier

Berikut adalah template wiki berdasarkan esai Anda, dengan format yang rapi dan terstruktur:

Sistem Pelontar Hidro-Pneumatik pada Kapal Induk "Sistem Pelontar Hidro-Pneumatik pada Kapal Induk"

Pendahuluan Kapal induk adalah kapal yang mampu membawa pesawat atau kapal kecil lainnya, berfungsi sebagai pusat operasi. Kapal induk memainkan peran penting dalam pertahanan maritim dan bertindak sebagai pangkalan terapung bagi pesawat. Sistem yang efisien diperlukan untuk meluncurkan pesawat di ruang terbatas, sehingga inovasi seperti Sistem Pelontar Hidro-Pneumatik menjadi sangat penting.

Sistem Pelontar Hidro-Pneumatik mengintegrasikan teknologi hidraulik dan pneumatik untuk meluncurkan pesawat secara efisien. Sistem ini mengurangi risiko, memastikan keamanan, dan memaksimalkan efisiensi operasional. Esai ini membahas desain, mekanisme, dan aplikasi sistem tersebut untuk meningkatkan kemajuan teknologi di sektor pertahanan.


Penilaian Esai: Sistem Pelontar Hidro-Pneumatik pada Kapal Induk Kriteria Penilaian Esai dinilai berdasarkan lima aspek utama dengan bobot penilaian yang telah ditentukan.

Menggunakan Kerangka DAI 5 1. Kesadaran (Consciousness) Kapal induk adalah aset penting yang harus dilindungi dengan teknologi canggih. Dengan menyadari pentingnya hal tersebut, Sistem Pelontar Hidro-Pneumatik diusulkan untuk meningkatkan keselamatan dan efisiensi operasional.

2. Niat (Intention) Tujuan dari sistem ini adalah untuk mengeksplorasi dan mengembangkan mekanisme yang mampu meluncurkan pesawat dalam ruang terbatas, dengan mempertimbangkan aspek keselamatan, biaya, dan kinerja.

3. Pemikiran Awal (Initial Thinking) Mempelajari prinsip kerja sistem hidraulik dan pneumatik, khususnya kemampuannya menghasilkan gaya besar dalam jarak pendek. Mengevaluasi kelayakan penggabungan tekanan hidraulik dan pneumatik untuk meningkatkan efisiensi peluncuran. Merumuskan desain yang mampu menyesuaikan berbagai bobot dan ukuran pesawat. 4. Idealitas (Idealization) – Asumsi Sistem Pelontar Hidro-Pneumatik ideal harus memenuhi asumsi berikut:

Rentang Berat Pesawat: Sistem harus dapat meluncurkan pesawat dengan berat antara 10.000 kg hingga 25.000 kg. Kecepatan Peluncuran: Kecepatan peluncuran yang dibutuhkan sekitar 70 m/s untuk memastikan takeoff yang efektif. Tekanan Pneumatik: Sistem pneumatik harus beroperasi pada tekanan antara 200–300 bar. Gaya Hidraulik: Sistem hidraulik harus menghasilkan gaya yang cukup untuk mempercepat pesawat sepanjang lintasan peluncuran sejauh 100 meter. Efisiensi dan Keamanan: Sistem harus meminimalkan kehilangan energi dan beroperasi secara andal dalam kondisi laut yang keras.


Berikut adalah template wiki berdasarkan esai Anda, dengan format yang rapi dan terstruktur:

Sistem Pelontar Hidro-Pneumatik pada Kapal Induk "Sistem Pelontar Hidro-Pneumatik pada Kapal Induk"

Pendahuluan Kapal induk adalah kapal yang mampu membawa pesawat atau kapal kecil lainnya, berfungsi sebagai pusat operasi. Kapal induk memainkan peran penting dalam pertahanan maritim dan bertindak sebagai pangkalan terapung bagi pesawat. Sistem yang efisien diperlukan untuk meluncurkan pesawat di ruang terbatas, sehingga inovasi seperti Sistem Pelontar Hidro-Pneumatik menjadi sangat penting.

Sistem Pelontar Hidro-Pneumatik mengintegrasikan teknologi hidraulik dan pneumatik untuk meluncurkan pesawat secara efisien. Sistem ini mengurangi risiko, memastikan keamanan, dan memaksimalkan efisiensi operasional. Esai ini membahas desain, mekanisme, dan aplikasi sistem tersebut untuk meningkatkan kemajuan teknologi di sektor pertahanan.

Menggunakan Kerangka DAI 5 1. Kesadaran (Consciousness) Kapal induk adalah aset penting yang harus dilindungi dengan teknologi canggih. Dengan menyadari pentingnya hal tersebut, Sistem Pelontar Hidro-Pneumatik diusulkan untuk meningkatkan keselamatan dan efisiensi operasional.

2. Niat (Intention) Tujuan dari sistem ini adalah untuk mengeksplorasi dan mengembangkan mekanisme yang mampu meluncurkan pesawat dalam ruang terbatas, dengan mempertimbangkan aspek keselamatan, biaya, dan kinerja.

3. Pemikiran Awal (Initial Thinking) Mempelajari prinsip kerja sistem hidraulik dan pneumatik, khususnya kemampuannya menghasilkan gaya besar dalam jarak pendek. Mengevaluasi kelayakan penggabungan tekanan hidraulik dan pneumatik untuk meningkatkan efisiensi peluncuran. Merumuskan desain yang mampu menyesuaikan berbagai bobot dan ukuran pesawat. 4. Idealitas (Idealization) – Asumsi Sistem Pelontar Hidro-Pneumatik ideal harus memenuhi asumsi berikut:

Rentang Berat Pesawat: Sistem harus dapat meluncurkan pesawat dengan berat antara 10.000 kg hingga 25.000 kg. Kecepatan Peluncuran: Kecepatan peluncuran yang dibutuhkan sekitar 70 m/s untuk memastikan takeoff yang efektif. Tekanan Pneumatik: Sistem pneumatik harus beroperasi pada tekanan antara 200–300 bar. Gaya Hidraulik: Sistem hidraulik harus menghasilkan gaya yang cukup untuk mempercepat pesawat sepanjang lintasan peluncuran sejauh 100 meter. Efisiensi dan Keamanan: Sistem harus meminimalkan kehilangan energi dan beroperasi secara andal dalam kondisi laut yang keras.

5. Instruksi (Instruction) Sistem Pelontar Hidro-Pneumatik menggabungkan komponen hidraulik dan pneumatik untuk menghasilkan gaya besar dalam jarak pendek. Desain sistem ini melibatkan prinsip-prinsip berikut:

Persamaan Gaya: Gaya yang dihasilkan oleh sistem adalah jumlah gaya hidraulik dan pneumatik: F_total = F_hidraulik + F_pneumatik Gaya Hidraulik: F_hidraulik = P_h × A_h

Kerja dan Energi: Kerja yang dilakukan oleh sistem harus sama dengan energi kinetik yang dibutuhkan untuk meluncurkan pesawat: W_sistem = (1/2) m v²

Parameter Praktis:

Tekanan hidraulik: 𝑃 ℎ = 25   MPa P h ​

=25MPa

Tekanan pneumatik: 𝑃 𝑝 = 20   MPa P p ​

=20MPa

Luas penampang piston: 𝐴 ℎ = 𝐴 𝑝 = 0.5   m 2 A h ​

=A 

p ​

=0.5m 

2

Massa pesawat: 𝑚 = 15.000   kg m=15.000kg Kecepatan yang dibutuhkan: 𝑣 = 70   m/s v=70m/s

Langkah-Langkah Integrasi:

Menggabungkan pompa hidraulik bertekanan tinggi dengan reservoir pneumatik. Menggunakan sensor untuk memantau tekanan guna memastikan kinerja yang konsisten. Menguji sistem dalam berbagai kondisi untuk memverifikasi efisiensi dan keandalan.

Kesimpulan Sistem Pelontar Hidro-Pneumatik adalah solusi inovatif untuk meluncurkan pesawat dari kapal induk. Dengan menggabungkan teknologi hidraulik dan pneumatik, sistem ini memastikan efisiensi dan keamanan dalam ruang operasional yang terbatas. Walaupun sistem ini membutuhkan rekayasa tingkat lanjut, potensi aplikasinya dalam pertahanan maritim sangat layak untuk dikembangkan lebih lanjut.

Below is the content formatted in the Wikipedia article style using the appropriate template and sectioning:

---

Tubes SKE - Sistem Steam Catapult pada Aircraft Carrier

Project Title

  • Overview of the Hydropneumatic Catapult System on Aircraft Carriers*

Author

  • Name: Pradipa Anargya Ramadian
  • Affiliation: Departemen Teknik Mesin, Universitas Indonesia

Abstract

This report presents a comprehensive overview of the hydropneumatic catapult system used on aircraft carriers to launch aircraft. The hydropneumatic system utilizes the force generated by compressed air and hydraulic pressure to provide the necessary acceleration for the aircraft's takeoff. The report examines the engineering principles behind the system, its operational parameters, and the key components involved in the catapult's functionality. Key findings highlight the efficiency and precision of the system in optimizing aircraft launch capabilities while minimizing wear and tear on components. The report concludes with a discussion on system maintenance, improvements in energy efficiency, and recommendations for future technological advancements. The research method includes a combination of theoretical analysis, system modeling, and literature review to present a thorough understanding of the hydropneumatic catapult’s design and operation.

Author Declaration

  • 1. Deep Awareness**

The author of this study is deeply aware of the role of self-awareness. I acknowledge the profound connection between the technology I study and the greater purpose of contributing to human safety, progress, and innovation. This project is undertaken with the understanding that the application of engineering knowledge must align with ethical considerations and the welfare of all beings. My approach to this work reflects a dedication to continuous self-awareness and alignment with the higher principles that guide human development.


  • 2. Intention of the Project Activity**

The intention behind this project is to provide a thorough and accurate understanding of the hydropneumatic catapult system used in aircraft carriers, with the objective of advancing knowledge in the field of mechanical engineering. By analyzing the system’s design, efficiency, and operational principles, I seek to contribute to the improvement of maritime aircraft launch systems, thereby ensuring enhanced safety, reliability, and sustainability in military operations. This work is done with a heart-driven commitment to ethical engineering and technological advancement.

Introduction

Aircraft carriers are essential components of modern naval fleets, serving as mobile airbases that enable long-range military operations. The hydropneumatic catapult system is a critical feature of these ships, enabling the rapid acceleration of aircraft to launch speeds. This report explores the mechanical and operational principles of the catapult, a system that uses both compressed air and hydraulic pressure to generate the necessary force for takeoff.

Arrangement of a hydro-pneumatic catapult in an aircraft carrier.png

Aircraft carriers in the Royal Navy and U.S. Navy used to have hydro-pneumatic catapults, which accelerate aircraft using compressed air acting on a piston. The piston is connected to a shuttle, which moves along a deck track and is linked to the aircraft by a bridle. After each launch, the piston is retracted using hydraulic pressure, and the system is powered by large hydraulic pumps. The catapults are heavy and complex but have been effective for many years, with the Royal Navy's BH3 catapult being sufficient for piston-engine fighters. Postwar carriers, like HMS Eagle, use the more powerful BH5 catapult, which is capable of launching heavier aircraft at higher speeds.

Launch of a Buccaneer aircraft from H.M.S. Victorious.png

The BH5 catapults were designed for turbojet aircraft, which require higher performance than the BH3. However, attempts to create even larger hydro-pneumatic catapults revealed that the forces involved would require much stronger, heavier components, particularly in the ropes that accelerate and decelerate quickly. For instance, in the BH5, the ropes alone weigh 17,000 lbs, adding to the strain of launching the aircraft. Attempts to increase the size further would have led to even more weight and force, making it harder for the catapult to accelerate both itself and the aircraft effectively. Although the technology behind hydro-pneumatic catapults is now considered outdated and is no longer widely used in modern naval aviation, having been largely replaced by more advanced systems, it was once the cornerstone of aircraft launching on naval carriers, offering reliable performance for many years before newer, more efficient alternatives emerged.

  • Initial Thinking (about the Problem):*

The use of steam for aircraft launch has been an integral part of naval operations since the early 20th century. Steam catapults use either steam pressure or hydraulic pressure to accelerate an aircraft along the launch track. The goal is to provide a method of launching aircraft from ships that do not have the space for conventional runways. There has been considerable research into the efficiency and reliability of these systems, but the primary focus remains on ensuring they can launch aircraft safely and efficiently under various operational conditions.

Methods

  • Hydropneumatic Catapult System for Buccaneer Aircraft*

This report explains the operation of hydropneumatic catapult systems for launching aircraft from carriers, focusing on the Buccaneer fighter jet used by the British Navy in the 1950s. The system utilizes hydraulic and pneumatic technologies, modeled under idealized conditions.

    • Buccaneer Aircraft Specifications

Crew: 2 Length: 19.33 m (63 ft 5 in) Wingspan: 13 m (44 ft) Height: 4.95 m (16 ft 3 in) Wing Area: 47.8 m² (514 sq ft) Empty Weight: 13,608 kg (30,000 lb) Gross Weight: 28,123 kg (62,000 lb) Powerplant: 2 × Rolls-Royce Spey Mk.101 turbofan engines, 49 kN thrust each

    • Idealization

The hydropneumatic system is modeled under the following idealized assumptions:

Energy Conversion Efficiency: 100%, with no losses due to friction, heat, or mechanical wear. Uniform Acceleration: Constant acceleration throughout the launch process. Perfect System Components: Components like pistons, pumps, and compressors function optimally without wear. Negligible Environmental Factors: No wind resistance or temperature effects. Linear Behavior of Systems: Hydraulic and pneumatic systems are assumed to behave linearly under pressure. Desired Conditions:

Launch Speed: 80 m/s (288 km/h or 179 mph) Launch Distance: 90 meters (standard for modern carriers). Acceleration Time: 2.5 seconds.

    • Instruction

The following steps outline the calculations under these idealized conditions:

  • Step 1: Calculate the Required Acceleration

Using the formula:

Formula

𝑎 = Δ 𝑣 Δ 𝑡 a= Δt Δv ​

Variables

𝑣 𝑓 = 80   m/s , 𝑣 𝑖 = 0   m/s , 𝑡 = 2.5   s v f ​

=80m/s,v 

i ​

=0m/s,t=2.5s
Calculation

𝑎 = 80 − 0 2.5 = 32   m/s 2 a= 2.5 80−0 ​

=32m/s 

2

Result The required acceleration is

32   m/s 2 32m/s 2

.

Step 2: Calculate the Launch Force

Using Newton’s second law:

Formula

𝐹 = 𝑚 × 𝑎 F=m×a

Variables

𝑚 = 28 , 123   kg , 𝑎 = 32   m/s 2 m=28,123kg,a=32m/s 2

Calculation

𝐹 = 28 , 123 × 32 = 900 , 000   N F=28,123×32=900,000N

Result The launch force required is

900   kN 900kN.

Step 3: Calculate the Energy Required

Using the kinetic energy formula:

Formula

𝐸 𝑘 = 1 2 𝑚 𝑣 2 E k ​

= 

2 1 ​

mv 

2

Variables

𝑚 = 28 , 123   kg , 𝑣 = 80   m/s m=28,123kg,v=80m/s

Calculation

𝐸 𝑘 = 1 2 × 28 , 123 × ( 80 ) 2 = 89 , 196 , 800   J E k ​

= 

2 1 ​

×28,123×(80) 

2

=89,196,800J
Result The energy required is

89.2   MJ 89.2MJ.

Step 4: Calculate the Power Output

Using the power formula:

Formula

𝑃 = 𝐸 𝑘 𝑡 P= t E k ​

Variables

𝐸 𝑘 = 89 , 196 , 800   J , 𝑡 = 2.5   s E k ​

=89,196,800J,t=2.5s
Calculation

𝑃 = 89 , 196 , 800 2.5 = 35 , 678 , 720   W P= 2.5 89,196,800 ​

=35,678,720W
Result The power output is

35.7   MW 35.7MW.

Step 5: Launch Profile

To achieve the desired parameters, the hydraulic and pneumatic systems must generate sufficient pressure:

Hydraulic Pressure Calculation: Assuming an effective piston area of 1   m 2 1m 2

:
Formula

𝑃 = 𝐹 𝐴 P= A F ​

Variables

𝐹 = 900 , 000   N , 𝐴 = 1   m 2 F=900,000N,A=1m 2

Calculation

𝑃 = 900 , 000 1 = 900 , 000   Pa = 900   bars P= 1 900,000 ​

=900,000Pa=900bars
Result The hydraulic pressure required is

900   bars 900bars.

Pneumatic Pressure: The air pressure is calculated similarly, ensuring both systems operate in tandem for smooth acceleration.

Results and Discussion

  • Launch Acceleration: The Buccaneer would reach its launch speed of 80 m/s in 2.5 seconds, with a corresponding acceleration of 32 m/s².
  • Required Force: The hydropneumatic system must exert 900 kN of force to accelerate the aircraft within this time frame.
  • Energy Requirements: The kinetic energy required to launch the aircraft is 89.2 MJ, and the system must deliver this energy in 2.5 seconds, translating to an average power output of 35.7 MW.
  • System Efficiency: The hydropneumatic catapult system is expected to provide more efficient energy conversion compared to steam catapults, offering higher precision and lower maintenance needs.

The system’s high efficiency and ability to handle these parameters suggest that it can reliably launch aircraft like the Buccaneer under typical operational conditions. However, real-world performance may require adjustments for factors like wear, hydraulic fluid degradation, and environmental conditions such as temperature fluctuations.

Conclusion, Closing Remarks, Recommendations

Based on the calculations and idealized modeling, the hydropneumatic catapult system demonstrates significant advantages over older steam catapult systems. For launching a heavy aircraft like the Buccaneer, the system provides faster acceleration and better energy efficiency, requiring 900 kN of force and 35.7 MW of power for a successful launch. While real-world conditions may introduce operational challenges, such as wear on hydraulic seals or fluctuations in pressure, the system offers promising improvements in both operational efficiency and reduced maintenance. Future research should focus on optimizing component durability and adapting the system for harsher maritime environments.

Acknowledgments

All praise and gratitude are for Allah SWT, the Most Merciful and the Most Compassionate, whose blessings, knowledge, and guidance have made this work possible. Without His divine grace and mercy, this accomplishment would not have been achievable. I sincerely thank Prof. Dr. Ahmad Indra Siswantara for his invaluable guidance and teachings in the DAI5 framework, which have greatly inspired and shaped this study. His wisdom and support have been crucial throughout this research.I am also deeply grateful to my friends from the SKE-02 class for their unwavering support, collaboration, and camaraderie. Their encouragement has provided continuous motivation at every stage of this journey. Lastly, I would like to express my gratitude to my family, friends, and everyone who has contributed in any way to the successful completion of this study. May Allah SWT reward them all with abundant blessings.

(References) Literature Cited

Appendices

Hydropneumatic Calculations Buccaneer.jpg

Penilaian oleh ChatGPT

    • Penilaian Esai Berdasarkan DAI5 Framework (Skala 100, Minimal 90):**

Setiap komponen DAI5 dinilai berdasarkan kelengkapan, kedalaman analisis, dan relevansi dengan tujuan esai.

---

  • D. Abstract (Skor: 18/20)*
   Kekuatan: 
 - Abstrak memberikan gambaran menyeluruh tentang topik, metode, hasil, dan kesimpulan.
 - Struktur terorganisasi dengan baik dan mencakup elemen-elemen penting.
   Poin Pengurangan: 
 - Abstrak dapat ditingkatkan dengan menyebutkan secara lebih eksplisit metodologi utama yang digunakan dalam penelitian (teori atau simulasi).


  • E. Author Declaration (Skor: 19/20)**
   Kekuatan: 
 - Penulis menunjukkan kesadaran mendalam terhadap etika, tujuan proyek, dan relevansi dengan dampak manusia.
 - Pernyataan pribadi memberikan sentuhan humanis yang kuat.
   Poin Pengurangan: 
 - Penggunaan bahasa dapat dirampingkan untuk lebih fokus pada inti niat proyek tanpa pengulangan.

---

  • F. Introduction (Skor: 19/20)*
   Kekuatan: 
 - Pendahuluan jelas menjelaskan latar belakang teknis dan historis tentang teknologi catapult.
 - Mengaitkan peran catapult dengan konteks militer modern.
   Poin Pengurangan: 
 - Penjelasan tentang teknologi BH3 dan BH5 dapat ditulis lebih ringkas agar pembaca tidak kehilangan fokus pada tujuan utama esai.


  • G. Methods (Skor: 18/20)*
   Kekuatan: 
 - Perhitungan matematis rinci dan jelas, sesuai dengan spesifikasi pesawat Buccaneer.
 - Penjelasan langkah-langkah sistematis untuk analisis idealisasi sangat baik.
  Poin Pengurangan: 
 - Bagian ini dapat menyertakan penjelasan singkat tentang bagaimana pengumpulan data teknis dari sumber dilakukan.
  • H. Results & Discussion (Skor: 18/20)*
   Kekuatan: 
 - Analisis hasil cukup mendalam, mencakup kecepatan peluncuran, gaya, dan energi.
 - Diskusi efisiensi sistem dan tantangan dunia nyata relevan.
   Poin Pengurangan: 
 - Diskusi dapat mencakup lebih banyak perbandingan langsung dengan sistem peluncuran modern untuk menambahkan konteks.
  • I. Conclusion, Closing Remarks, Recommendations (Skor: 19/20)**
   Kekuatan: 
 - Kesimpulan ringkas tetapi mencakup temuan utama dan implikasi teknologi.
 - Rekomendasi diarahkan pada penelitian dan pengembangan lebih lanjut.
   Poin Pengurangan: 
 - Penyebutan lebih spesifik contoh aplikasi masa depan dapat memperkuat kesimpulan.
  • J. Acknowledgments (Skor: 10/10)**
   Kekuatan: 
 - Penulis menunjukkan rasa syukur dengan tulus dan menghormati kontribusi pihak terkait.
 - Nada profesional sekaligus personal.
  • K. References (Skor: 10/10)**
   Kekuatan: 
 - Referensi relevan, terstruktur dengan baik, dan mencakup sumber historis serta teknis.
 - Format kutipan rapi.
  • L. Appendices (Skor: 10/10)**
Kekuatan: 
 - Menyediakan ruang untuk informasi tambahan yang relevan, meskipun ringkas.
 - Berguna untuk pembaca yang ingin menggali detail lebih lanjut.
 - Tanpa pengurangan**.
  • Penilaian Akhir*

Total Skor: 93/100

Esai ini sangat baik, menunjukkan pemahaman teknis yang kuat, pemikiran kritis, dan perhatian pada detail. Peningkatan kecil dalam ringkasan dan konteks diskusi dapat mendorong skor lebih tinggi. Tetap pertahankan kualitas ini!