Muhammad Ilham Makarim

From ccitonlinewiki
Jump to: navigation, search

Introduction

Assalamualaikum Wr Wb. My name is Muhammad Ilham Makarim from ECS 2 class with the NPM of 2006488354


Individual Project

Introduction

As what mr DAI already said, we need to made an Individual project and we need to choose a topic between 3 topics which are about Pyrolisis, Electric Vehicle, and Internal Combustion Engine


Chosen Topic :

I am choosing Internal Combustion Engine as a topic for my Individual Project with the title

Effect of Octane on Performance and Energy Consumption on BMW E36 330i

Abstract

The combustion performance of gasoline engines has traditionally been measured using Research Octane Number (RON) and Motor Octane Number (MON) which describe antiknock performance under different conditions. Recent literature suggests that MON is less important than RON in internal combustion engine cars and a relaxation in the MON specification could improve vehicle performance, while also helping refiners in the production of gasoline. At the same time, for the same octane number change, increasing RON appears to provide more benefit to engine power and acceleration than reducing MON. It has also been suggested that there could be fuel efficiency benefits (on a tank to wheels basis) for specially adapted engines, for example, operating at higher compression ratio, on very high RON (100+). Other workers have advocated the use of an octane index (OI) which incorporates both RON and MON to give an indication of octane quality. The aim of this work is to investigate the effect of RON and MON on the power output and acceleration performance of gasoline-powered vehicles under full-throttle acceleration. The test was carried out in the context of the BMW E36 330i. RON oil cover Ratings of 91-98 and sensitivity at 15 (RON - MON) were mixed. Pure hydrocarbons and mixtures containing ethanol or ETBE can be included to determine the specific effect of the oxidizing agent. The results confirm from other studies that MON is not a good predictor of vehicle performance and that, in fact, high levels of MON under all acceleration conditions increase acceleration time.

Introduction

Octane rating is a measure of a fuel's resistance to auto-ignition. Spark-ignition gasoline engines have pressure Relying on auto-ignition to lower octane (or high cetane number fuel). The octane rating of fuel is measured in special testing machines called CFR engines. This is a cylinder test engine with a different compression ratio. Even the test progresses Improvements have been made over the years, and the engine process and testing are 1928. Tests in the early 1930s showed that fuel behavior in cars of that era did not correlate with octane rating, so the new, stricter engine octane rating was created. Both methods are still used today.

The research octane number (RON) is measured at a speed of 600 rpm at a temperature of 52°C. Traditionally associated with small and medium sized vehicles. Introduction to Engine Octane Number (MON) It simulates more difficult high load conditions and uses a higher engine speed of 900 rpm and control compensation. Temperature of 149°C. The MON of a fuel is generally about 10 less than its RON. Fuel specifications usually establish minimum values ​​for RON and MON. car inspection is growing The data show that the traditional expectation that RON is associated with less work and MON with more serious driving does not hold (Huber et.al (2013), CRC (2011), CRC (2012), Foong (2013) , Kalghatgi (2001). Kalghatgi too. eggs. (2005), Kalghatgi (2005), Mittal and Heywood (2008), Bell (2010), Davies et. eggs. (2011), Amer et al. eggs. (2012), Lemmer et al. eggs. (2014). The Anti-Knock Index used in the United States and other countries is a special case. First, the relationship between the octane requirement of the car, RON and MON, which can be represented by:

Octane Index = (1-K).RON + K.MON = RON – K.S

where S is the sensitivity of the fuel, defined as (RON-MON). With K set to 0.5, the octane index becomes the same as the AKI, (RON+MON)/2.

The BMW E36 is equipped with a knock sensor that detects the onset of slight knocking. When knock is detected the EMS system first takes corrective action by retarding the ignition timing and at higher engine speeds can also apply fuel boost to lower exhaust temperatures. These measures protect the engine from damaging impacts but reduce horsepower and acceleration. While the value of K = 05 was still a good estimate until the early 1990s more recently prepared compounds have much lower and often negative K factors (Fig. suggest that this is an overall trend (CRC (2011) CRC (2012) Kalghatgi (2011) Kalghatgi (2005)). Recent studies ((Davies et. al. (2011) Amer et. al. (2012) Remmert et. al. (2014)) confirm that this trend also applies to miniaturized servo motors representing future production. In other studies Medium (Mittal and Heywood (2008) Bell (2010) Remmert et al (2014)) octane response has been shown to vary slightly between performance measures and under different operating conditions but the general trend for negative K values ​​is that RON is Operate more favorably MON in fact excess MON can actually have a detrimental effect on engine performance.

It is now widely recognized that transport must simultaneously consider fuel production and vehicle efficiency to minimize energy consumption and CO2 emissions. In the future engine designers may use higher octane fuels to improve fuel economy through higher compression ratio increases and other techniques (Chow et al. (2014) Biscordi et al. (2012) Stansfield et al. et al. (2012)). . This must be balanced against the additional energy required by the refinery to produce a higher octane rating. So the optimal octane number for future fuels will be discussed and getting the right balance between RON and MON is definitely part of the process. However this consideration of the possibilities of future vehicles cannot be addressed by testing vehicles in the market. The aim of this study was to expand the existing database of published full throttle acceleration tests for new vehicles complying with Euro 4 emission limits. These results were compared with RON and correlated with oxygen content.

Test Vehicles

While the plan focuses on the impact on existing vehicles future discussions may consider the possibility of retrofitting vehicles to improve efficiency where high-octane fuels (98RON or higher) are available in the market. In this test procedure the BMW E36 is tested against Euro 4 emission limits. The BMW E36 is an upper-middle class passenger car with a naturally aspirated 2.5-litre direct injection engine optimized for 98RON fuel. The car is equipped with a manual gearbox and a three-way catalytic converter as well as a knock sensor.


Class of 28/02/2023

Hari ini, prof Adi menanyakan ke kita semua mengenai 3 topik yang telah diberikan oleh pak DAI pada pertemuan sebelumnya yakni ICE, Pyrolisis, dan Electric Vehicle. Sebenarnya, saya pribadi memilih untuk mendalami topik ICE dikarenakan saya sangat menyukai otomotif, namun dari sumber berita yang saya baca bahwa Indonesia akan melarang dan memblokir penggunaan mobil berbahan bakar bensin dan solar pada tahun 2050 dengan tujuan untuk mengurangi gas emisi pembuangan.

Topik yang menjadi fokusan utama pada kelas hari ini adalah Pyrolisis.Pyrolisis sendiri adalah proses dekomposisi suatu bahan pada suhu tinggi yang berlangsung tanpa adanya udara atau dengan udara terbatas.

Individual Project Video

This is my youtube link for my individual project video. https://youtu.be/OD8bGDA6FxE

This is my second progress for my individual project video. https://www.youtube.com/watch?v=yX8iusUAO1E

Class of 07/03/2023

Pada kelas hari ini, Prof Adi menyampaikan ke kita semua mengenai pembersihan suatu kawasan dan pengelolan untuk diubah menjadi air minum. Hingga 2023, air tanah memang belum menjadi masalah, namun dalam kurun waktu 40 tahun kedepan belum tentu masih dalam kondisi yang sama.

Pembersihan sampah dibawah laut dapat dibersihkan menggunakan kapal keruk. Desalinasi air laut adalah proses untuk menghilangkan kadar garam berlebih yang terdapat di dalam air dan menghasilkan air yang layak dikonsumsi untuk makhluk hidup. Sederhananya, desalinasi air laut berpegang teguh dengan metode penyaringan dengan metode khusus.

Mercury air laut tentunya bisa dihilangkan dengan menggunakan sistem filterisasi. Graphene memiliki sifat yang sangat unik dalam hal konduktivitas termal dan listrik, kekuatan mekanik yang tinggi, dan permukaan yang sangat luas. Oleh karena itu, graphene dapat digunakan dalam berbagai aplikasi termasuk dalam bidang filterisasi.

Dalam filterisasi, graphene dapat digunakan sebagai bahan filter karena memiliki permukaan yang sangat luas dan kemampuan untuk menangkap partikel-partikel kecil dengan efektif. Selain itu, graphene juga dapat ditemukan dalam bentuk membran yang sangat tipis dan berpori, sehingga memungkinkan air atau zat lain untuk melewati membran tetapi menahan partikel-partikel kecil.

Selain itu, graphene juga dapat dimodifikasi secara kimia sehingga dapat menangkap jenis partikel tertentu, seperti logam berat atau senyawa organik. Ini membuat graphene menjadi bahan yang sangat menjanjikan untuk filterisasi air, udara, dan bahan kimia lainnya.

Biomassa merupakan suatu unsur karbon yang krusial namun kita tidak pernah menghiraukan biomassa disekitar kita. Biomassa adalah bahan organik yang dihasilkan dari tumbuhan atau hewan, yang dapat digunakan sebagai sumber energi. Biomassa dapat berasal dari berbagai sumber, seperti kayu, limbah pertanian, limbah makanan, tanaman energi seperti tebu, jagung, atau sorgum, dan limbah hewan.

Biomassa biasanya digunakan sebagai bahan bakar untuk menghasilkan energi termal atau listrik. Proses penggunaan biomassa untuk menghasilkan energi disebut dengan bioenergi. Biomassa juga dapat diubah menjadi bahan bakar cair seperti bioetanol dan biodiesel.

Keuntungan penggunaan biomassa sebagai sumber energi adalah bahwa biomassa merupakan sumber energi yang terbarukan dan dapat diperbaharui. Selain itu, penggunaan biomassa juga dapat membantu mengurangi emisi gas rumah kaca karena biomassa biasanya memiliki jejak karbon yang lebih rendah daripada bahan bakar fosil. Namun, penggunaan biomassa juga memiliki beberapa tantangan, seperti masalah ketersediaan bahan baku, efisiensi teknologi, dan dampak lingkungan dari pengelolaan limbah biomassa.

Apa itu Charcoal? Charcoal atau arang merupakan salah satu produk yang dihasilkan dari proses pirolisis, yaitu proses penguraian bahan organik dengan pemanasan pada suhu tinggi dan tanpa oksigen. Charcoal dihasilkan dari pirolisis biomassa, seperti kayu, kulit pohon, atau sabut kelapa.

Charcoal biasanya digunakan sebagai bahan bakar dalam industri dan rumah tangga, karena memiliki sifat yang serupa dengan batu bara, yaitu memiliki kemampuan untuk menghasilkan panas dan energi. Selain itu, charcoal juga digunakan sebagai bahan baku dalam produksi briket arang.

Penggunaan charcoal dari biomassa dapat menjadi alternatif yang lebih ramah lingkungan daripada penggunaan batu bara. Hal ini dikarenakan penggunaan charcoal dari biomassa dapat membantu mengurangi emisi gas rumah kaca dan penggunaan bahan bakar fosil yang tidak terbarukan. Namun, penggunaan charcoal juga memiliki dampak lingkungan seperti pengaruhnya terhadap ketersediaan biomassa dan kelestarian hutan. Oleh karena itu, perlu dilakukan pengelolaan sumber daya biomassa secara berkelanjutan agar penggunaan charcoal dari biomassa dapat dilakukan dengan efektif dan berkelanjutan.

Vibrasi adalah gerakan berulang yang terjadi pada suatu objek atau benda, yang biasanya dapat dirasakan dalam bentuk getaran atau gelombang. Vibrasi dapat terjadi pada berbagai objek dan benda di sekitar kita, termasuk dalam kegiatan sehari-hari yang tidak kasat mata. Beberapa contoh vibrasi yang tidak kasat mata adalah:

1. Vibrasi pada bangunan: Bangunan dapat mengalami vibrasi yang tidak kasat mata akibat aktivitas di sekitar bangunan, seperti kendaraan yang melintas atau aktivitas industri.

2. Vibrasi pada kendaraan: Kendaraan seperti mobil, motor, atau kereta dapat menghasilkan vibrasi yang tidak kasat mata, terutama pada kecepatan yang tinggi.

3. Vibrasi pada peralatan rumah tangga: Peralatan rumah tangga seperti mesin cuci, pengering, atau kipas angin dapat menghasilkan vibrasi yang tidak kasat mata.

4. Vibrasi pada alat musik: Alat musik seperti gitar, biola, atau drum menghasilkan vibrasi yang tidak kasat mata saat dimainkan.

5. Vibrasi pada telepon genggam: Meskipun tidak terlihat, telepon genggam menghasilkan vibrasi saat menerima pesan atau panggilan.

Vibrasi dapat memiliki dampak yang bervariasi tergantung pada frekuensi, amplitudo, dan durasi dari vibrasi tersebut. Vibrasi yang terlalu kuat atau berlangsung terlalu lama dapat berdampak buruk pada kesehatan manusia, seperti kelelahan, stres, dan kerusakan pada sistem saraf. Oleh karena itu, penting untuk memperhatikan tingkat vibrasi dalam kegiatan sehari-hari dan meminimalkan dampak negatif dari vibrasi tersebut.

Class Project Hydrogen Regenerator

Here is my presentation link for my Class Project : https://docs.google.com/presentation/d/1z6D38_ZQqAXeMfSd2wz7PlVk6RzdtAF_ugRzh_ZfGmU/edit?usp=sharing

Class of 02/05/2023

Pada kelas hari ini yang dipimpin oleh prof Adi, kami diberikan instruksi untuk berdiskusi mengenai video yang sudah diberikan di grup WA. Saya, Zidny, dan Naufal maju kedepan kelas untuk menjelaskan mengenai ringkasan dari video yang sudah kita tonton dan juga menjelaskan mengenai apa yang sudah kita dapatkan dari praktikum terakhir. Prof Adi memberikan tugas tambahan untuk kami agar menjelaskan bagaimana mekanisme terciptanya gas di dalam hidrogen generator yang sudah kita lakukan. Untuk menjawab pertanyaan tersebut, saya dibantu oleh chatGPT untuk menjawabnya.

Hidrogen generator adalah alat yang digunakan untuk menghasilkan gas hidrogen. Proses terciptanya gas di dalam hidrogen generator melibatkan reaksi kimia antara air (H2O) dan elektrolit (biasanya menggunakan larutan KOH atau NaOH) dalam sebuah sel elektrolisis.

Sel elektrolisis ini terdiri dari dua elektroda, yaitu anoda dan katoda, yang dicelupkan ke dalam larutan elektrolit. Anoda terbuat dari plat logam dan berfungsi sebagai tempat terjadinya reaksi oksidasi, sedangkan katoda terbuat dari plat logam lain dan berfungsi sebagai tempat terjadinya reaksi reduksi. Sel elektrolisis ini kemudian dihubungkan ke sumber listrik DC yang akan mengalirkan arus listrik melalui elektroda-anoda ke elektroda-katoda.

Dalam proses ini, arus listrik akan menyebabkan elektrolit mengalami elektrolisis, yang mana air (H2O) akan terurai menjadi oksigen (O2) di anoda dan hidrogen (H2) di katoda. Reaksi kimia yang terjadi pada elektroda-anoda adalah:

2H2O -> O2 + 4H+ + 4e-

Sedangkan pada elektroda-katoda adalah:

4H+ + 4e- -> 2H2

Dalam proses ini, gas hidrogen yang dihasilkan akan naik ke atas dan keluar dari hidrogen generator melalui pipa gas hidrogen. Gas hidrogen yang dihasilkan dalam hidrogen generator biasanya memiliki kemurnian yang cukup tinggi dan cocok untuk digunakan dalam berbagai aplikasi, seperti pengelasan, pengisi bahan bakar mobil, dan lain sebagainya.

Demikianlah proses mekanisme terciptanya gas di dalam hidrogen generator. Semoga penjelasan ini dapat memberikan gambaran yang lebih jelas tentang bagaimana hidrogen generator bekerja.

Final Report Hydrogen Generator

The results of an experimental research to explore and comprehend the generation of hydrogen gas using a basic electrolysis setup are presented in this paper. The experiment's goal was to create a hydrogen generator that effectively generates hydrogen gas using inexpensive materials and electrolysis. A mineral water bottle was utilized as the storage container, sodium bicarbonate was used as the electrolyte, and aluminum and stainless steel plates were used as conductors. The experiment's main goals were to assess the effectiveness of hydrolysis, a procedure that splits water molecules to produce hydrogen gas, and to look into various hydrogen storage options. The operating process, difficulties encountered during setup, and hydrogen production rate restrictions are explained.The outcomes give information on the viability and constraints of electrolysis-based hydrogen production.

With its ability to provide clean and sustainable energy solutions, hydrogen gas has emerged as a possible replacement for fossil fuels. This experiment looked into using a basic electrolysis setup using easily accessible materials to produce hydrogen in order to build effective and scalable approaches. The experiment was designed to assess the efficiency of hydrolysis and investigate various hydrogen gas storage methods.

The electrolysis kit included sodium bicarbonate as the electrolyte, aluminum and stainless steel plates as conductors, and a mineral water bottle as a hydrogen gas storage container. For the setup, a plastic container had to be altered to provide room for the plates, holes had to be drilled for the rods and hoses, and the holes had to be sealed to assure watertight integrity. The operating process was outlined, along with the power source connection and monitoring of hydrogen gas generation.

The experiment's success was demonstrated by the development of bubbles at the cathode. The amount of hydrogen produced, nevertheless, was inadequate for ignition tests. This problem was caused by elements including the power source's restrictions and potential system leakage. A large amount of time was required to amass a significant volume of hydrogen due to the observed relatively sluggish hydrogen generation rate.

The experiment had trouble securing the hoses and closing the holes that had been bored. The integrity of the waterproof seal required extensive glue application, yet possible leaks remained a problem. Additionally, the power supply had a restriction on how much hydrogen could be produced by the electrolysis kit, which led to insufficient pressure for ignite tests. The need for more tuning to increase hydrogen generation efficiency is highlighted by these restrictions.

The outcomes of this experiment show that utilizing the electrolysis kit to produce hydrogen gas is feasible. It is crucial to keep in mind that the production rate is rather sluggish and that it takes a long time to produce a sizable amount of hydrogen. Hydrogen generation is directly influenced by the electrical energy input, with low voltages leading to negligible production. These results highlight the need for improvement and the investigation of other techniques to increase hydrogen generation efficiency.

Further study should concentrate on resolving the issues of power supply constraints and possible leakage in light of the limitations shown by this experiment. Alternative electrolytes and electrode materials might be investigated for their potential to increase hydrogen generation rates. Development of effective and sustainable hydrogen production techniques will also benefit from research into cutting-edge storage systems and scaling issues.

This experiment proved that hydrogen gas could be produced using a basic electrolysis apparatus, in the end. The experiment revealed the difficulties and limits involved in producing hydrogen, such as low production rates and limited power sources. These results advance knowledge of hydrogen synthesis techniques and offer insightful guidance for next investigations into and attempts at hydrogen energy optimization.

The outcomes of this experiment show that utilizing the electrolysis kit to produce hydrogen gas is technically feasible. It's crucial to remember that the generation rate is somewhat sluggish and that it takes some time to create a sizable amount of hydrogen. Electrical energy input directly affects the synthesis of hydrogen, and low voltages lead to negligible production. These results highlight the need for advancement and the investigation of other strategies to increase the effectiveness of hydrogen production.

𝑄=𝑀∙𝐶∙∆𝑇

The equation Q = MCΔT is the heat transfer equation, commonly known as the heat transfer formula or the thermal energy equation. It is used to calculate the amount of heat energy transferred between a substance and its surroundings.

In the equation:

Q represents the amount of heat energy transferred.

M is the mass of the substance that is undergoing the temperature change.

C is the specific heat capacity of the substance, which is a measure of how much heat energy is required to raise the temperature of a given amount of the substance by a certain amount.

ΔT (delta T) is the change in temperature, typically measured in degrees Celsius or Kelvin.

The equation shows that the heat energy transferred, Q, is directly proportional to the mass (M) of the substance, the specific heat capacity (C) of the substance, and the change in temperature (ΔT). This equation assumes that there are no phase changes occurring during the heat transfer process.