Difference between revisions of "Muhammad Annawfal Rizky Sihotang"

From ccitonlinewiki
Jump to: navigation, search
Line 18: Line 18:
  
 
A pressurized hydrogen tank, also known as a hydrogen storage vessel or hydrogen cylinder, is a specialized container designed to store hydrogen gas under high pressure. It is constructed using materials that can withstand the forces exerted by the high-pressure hydrogen gas.These tanks are typically made of strong and lightweight materials such as carbon fiber-reinforced composites or high-strength steel alloys. The tank's design incorporates safety features to ensure the containment and integrity of the stored hydrogen.The pressurized hydrogen tank is an essential component in various applications, including hydrogen fuel cell vehicles, hydrogen refueling stations, industrial processes, and energy storage systems. It allows for the safe storage and transportation of hydrogen gas, enabling its use as a clean and efficient energy source.
 
A pressurized hydrogen tank, also known as a hydrogen storage vessel or hydrogen cylinder, is a specialized container designed to store hydrogen gas under high pressure. It is constructed using materials that can withstand the forces exerted by the high-pressure hydrogen gas.These tanks are typically made of strong and lightweight materials such as carbon fiber-reinforced composites or high-strength steel alloys. The tank's design incorporates safety features to ensure the containment and integrity of the stored hydrogen.The pressurized hydrogen tank is an essential component in various applications, including hydrogen fuel cell vehicles, hydrogen refueling stations, industrial processes, and energy storage systems. It allows for the safe storage and transportation of hydrogen gas, enabling its use as a clean and efficient energy source.
 +
 +
== Coding and Calculating ==
 +
 +
Initializing Surface Area for hydrogen tank
 +
 +
<syntaxhighlight lang="xml">
 +
 +
import numpy as np
 +
from scipy.optimize import minimize
 +
 +
def objective(x):
 +
  # x[0] represents radius, x[1] represents height
 +
  radius = x[0]
 +
  height = x[1]
 +
 
 +
  # Calculate the surface area of ​thte cylinder
 +
  surface_area = 2 * np.pi * radius * (radius + height)
 +
 
 +
  return surface_area
 +
 +
def constraint(x):
 +
  # x[0] represents radius, x[1] represents height
 +
  radius = x[0]
 +
  height = x[1]
 +
 
 +
# Calculating the internal volume of the cylinder
 +
  volume = np.pi * radius**2 * height
 +
   
 +
# Difference between the volume and the desired value
 +
  return volume - 1000
 +
 +
# Initial value of radius and height
 +
x0 = [5.0, 10.0]
 +
 +
# Variable constraints (radius and height)
 +
bounds = [(0, None), (0, None)]
 +
 +
constraint_dict = {'type': 'eq', 'fun': constraint}
 +
 +
result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints=constraint_dict)
 +
 +
# Optimization results
 +
print("Optimization results:")
 +
print("Radius: {:.2f} cm".format(result.x[0]))
 +
print("Height: {:.2f} cm".format(result.x[1]))
 +
print("Surface Area: {:.2f} cm^2".format(result.fun))
 +
 +
</syntaxhighlight>
 +
 +
OUTPUT
 +
<syntaxhighlight lang="xml">
 +
 +
Optimized results:
 +
Radius: 5.52 cm
 +
Height: 10.43 cm
 +
Surface Area: 553.79 cm^2
 +
 +
</syntaxhighlight>
 +
 +
Finding The Thickness of The Pressure Tank (8 bar)
 +
<syntaxhighlight lang="xml">
 +
 +
r = 5.52e-2 # Tank Radius
 +
p = 800000 # 8 Bar Pressure
 +
t = 2.7e-3 # Minimum Thickness
 +
 +
while t < 11.05e-3:
 +
  hoop = (p * r) / t
 +
  print('Thickness', t, 'hoop stress =', hoop, "Pa")
 +
  t += 1e-3
 +
if hoop > 215e9: #Yield Strength of AISI 304
 +
  break
 +
 +
</syntaxhighlight>
 +
 +
OUTPUT
 +
<syntaxhighlight lang="xml">
 +
 +
Thickness 0.010700000000000001 hoop stress = 4127102.8037383175 Pa
 +
 +
</syntaxhighlight>
 +
 +
 +
== Cost Constraints ==
 +
 +
We conducted research on various distributor websites that offer Stainless Steel 304 plates ranging from 2-10 mm in thickness. After careful consideration, we found a supplier offering 5 mm thick plates at a cost of Rp.135,000 per plate. These plates have dimensions of 5 mm x 20 cm x 20 cm. Based on this information, we calculated that for a surface area of 553.79 cm^2, the cost of one unit would be approximately Rp.185,000.
 +
 +
This pricing structure allows us to stay within our budget constraint of Rp.500,000. Furthermore, since the cost of one unit falls within our budget, we can afford to purchase an additional unit with the same surface area as a backup. This decision aligns with our objective and ensures that we have an extra unit available.

Revision as of 12:32, 6 June 2023

Introduction

Foto Kiki2.jpg

Pagi Teknik ! I am Muhammad Annawfal Rizky Sihotang, a Mechanical Engineering student batch 2021. You can call me Kiki

Currently, taking numerical method class with Pak DAI.

NPM: 2106718281

Major: Mechanical Engineering

E-mail: annawfalrizky14@gmail.com

Hydrogen Tank Design and Optimization Project

A pressurized hydrogen tank, also known as a hydrogen storage vessel or hydrogen cylinder, is a specialized container designed to store hydrogen gas under high pressure. It is constructed using materials that can withstand the forces exerted by the high-pressure hydrogen gas.These tanks are typically made of strong and lightweight materials such as carbon fiber-reinforced composites or high-strength steel alloys. The tank's design incorporates safety features to ensure the containment and integrity of the stored hydrogen.The pressurized hydrogen tank is an essential component in various applications, including hydrogen fuel cell vehicles, hydrogen refueling stations, industrial processes, and energy storage systems. It allows for the safe storage and transportation of hydrogen gas, enabling its use as a clean and efficient energy source.

Coding and Calculating

Initializing Surface Area for hydrogen tank

import numpy as np
from scipy.optimize import minimize

def objective(x):
  # x[0] represents radius, x[1] represents height
  radius = x[0]
  height = x[1]
  
  # Calculate the surface area of ​thte cylinder
  surface_area = 2 * np.pi * radius * (radius + height)
  
  return surface_area

def constraint(x):
  # x[0] represents radius, x[1] represents height
  radius = x[0]
  height = x[1]
  
# Calculating the internal volume of the cylinder
  volume = np.pi * radius**2 * height
    
# Difference between the volume and the desired value
  return volume - 1000

# Initial value of radius and height
x0 = [5.0, 10.0]

# Variable constraints (radius and height)
bounds = [(0, None), (0, None)]

constraint_dict = {'type': 'eq', 'fun': constraint}

result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints=constraint_dict)

# Optimization results
print("Optimization results:")
print("Radius: {:.2f} cm".format(result.x[0]))
print("Height: {:.2f} cm".format(result.x[1]))
print("Surface Area: {:.2f} cm^2".format(result.fun))

OUTPUT

Optimized results:
Radius: 5.52 cm
Height: 10.43 cm
Surface Area: 553.79 cm^2

Finding The Thickness of The Pressure Tank (8 bar)

r = 5.52e-2 # Tank Radius
p = 800000 # 8 Bar Pressure
t = 2.7e-3 # Minimum Thickness

while t < 11.05e-3:
  hoop = (p * r) / t
  print('Thickness', t, 'hoop stress =', hoop, "Pa")
  t += 1e-3
if hoop > 215e9: #Yield Strength of AISI 304
  break

OUTPUT

Thickness 0.010700000000000001 hoop stress = 4127102.8037383175 Pa


Cost Constraints

We conducted research on various distributor websites that offer Stainless Steel 304 plates ranging from 2-10 mm in thickness. After careful consideration, we found a supplier offering 5 mm thick plates at a cost of Rp.135,000 per plate. These plates have dimensions of 5 mm x 20 cm x 20 cm. Based on this information, we calculated that for a surface area of 553.79 cm^2, the cost of one unit would be approximately Rp.185,000.

This pricing structure allows us to stay within our budget constraint of Rp.500,000. Furthermore, since the cost of one unit falls within our budget, we can afford to purchase an additional unit with the same surface area as a backup. This decision aligns with our objective and ensures that we have an extra unit available.