Latihan Frame3DD padaTruss 2D DanyHP

From ccitonlinewiki
Jump to: navigation, search

Bismillah,

Tugas Mempelajari dan Prakter Program Frame3DD dengan kasus Truss 2D


Rencana awal Struktur seperti gambar berikut :


2DCAD.jpg


Dengan input pada Frame3DD sebagai berikut :

Latihan Atap: linear static analysis of a 2D truss with support settlement (N,cm, ton)												
												
# node data ...												
16					# number of nodes							
#.node	x	y	z	r	units: cm							
												
1	0	0	0	0								
2	100	0	0	0								
3	200	0	0	0								
4	300	0	0	0								
5	400	0	0	0								
6	500	0	0	0								
7	600	0	0	0								
8	700	0	0	0								
9	800	0	0	0								
10	100	37.5	0	0								
11	200	75	0	0								
12	300	112.5	0	0								
13	400	150	0	0								
14	500	112.5	0	0								
15	600	75	0	0								
16	700	37.5	0	0								
												
												
# reaction data ...												
16					# number of nodes with reactions							
#.n	x	y	z	xx	yy	zz	1=fixed, 0= free					
												
1	0	0	1	1	1	0						
2	0	1	1	1	1	0						
3	0	0	1	1	1	0						
4	0	0	1	1	1	0						
5	0	0	1	1	1	0						
6	0	1	1	1	1	0						
7	0	1	1	1	1	0						
8	0	0	1	1	1	0						
9	0	0	1	1	1	0						
10	0	0	1	1	1	0						
11	0	0	1	1	1	0						
12	0	0	1	1	1	0						
13	0	0	1	1	1	0						
14	0	0	1	1	1	0						
15	0	0	1	1	1	0						
16	0	0	1	1	1	0						
												
												
# frame element data ...												
29					# number of frame elements							
#e	n1	n2	Ax	Asy	Asz	Jxx	Iyy	Izz	E	G	roll	density
#.	.	.	cm^2	cm^2	cm^2	cm^4	cm^4	cm^4	Mpa	Mpa	deg	T/cm^3
												
1	1	2	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
2	2	3	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
3	3	4	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
4	4	5	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
5	5	6	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
6	6	7	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
7	7	8	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
8	8	9	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
9	2	10	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
10	3	11	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
11	4	12	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
12	5	13	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
13	6	14	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
14	7	15	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
15	8	16	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
16	3	10	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
17	4	11	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
18	5	12	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
19	5	14	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
20	6	15	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
21	7	16	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
22	1	10	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
23	10	11	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
24	11	12	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
25	12	13	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
26	13	14	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
27	14	15	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
28	15	16	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
29	16	9	10	1	1	1	1	0.01	210000	80000	0	7.85E-06
												
												
0		# 1: include shear deformations, 0: don't										
0		# 1: include geometric stiffness, 0: don't	include	geometric	stiffness							
10		# exaggerate mesh deformations										
1		# zoom scale for 3D plotting										
10		# x-axis increment for internal forces										
												
												
1					# number of static load cases							
# Begin Static Load Case 1 of 1												
												
# gravitational acceleration for self-weight loading (global)												
#	gX	gY	gZ									
#	cm./s^2	cm./s^2	cm./s^2									
	0	0	0									
												
7					# number of loaded nodes							
#.n	Fx	Fy	Fz	Mxx	Myy	Mzz						
#	N	N	N	N.cm	N.cm	N.cm						
10	0	-2000	0	0	0	0						
11	0	-2000	0	0	0	0						
12	0	-2000	0	0	0	0						
13	0	-2000	0	0	0	0						
14	0	-2000	0	0	0	0						
15	0	-2000	0	0	0	0						
16	0	-2000	0	0	0	0						
												
0					# number of uniform loads							
0					# number of trapezoidal loads							
0					# number of internal concentrated loads							
0					# number of temperature loads							
												
0					# number of nodes with prescribed displacements							
#.n	Dx	Dy	Dz	Dxx	Dyy	Dzz						
#.	cm	cm	cm	rad.	rad.	rad.						
0	0	0	0	0	0	0						
# End Static Load Case 1 of 1												
												
# End of input data file for Latihan Atap												


GNUPlot hasil running Frame3DD sebagai berikut :


2Dterpusat.jpg


Output Frame3DD terhadap input adalah sebagai berikut :


Frame3DD version: 20140514+               http://frame3dd.sf.net/
GPL Copyright (C) 1992-2015, Henri P. Gavin 
Frame3DD is distributed in the hope that it will be useful but with no warranty.
For details see the GNU Public Licence: http://www.fsf.org/copyleft/gpl.html


Latihan Atap: linear static analysis of a 2D truss with support settlement (N cm  ton)              
Fri Mar 08 22:32:18 2019

In 2D problems the Y-axis is vertical.  In 3D problems the Z-axis is vertical.
________________________________________________________________________________
  16 NODES             16 FIXED NODES       29 FRAME ELEMENTS   1 LOAD CASES   
________________________________________________________________________________
N O D E   D A T A                                           R E S T R A I N T S
 Node       X              Y              Z         radius  Fx Fy Fz Mx My Mz
   1       0.000000       0.000000       0.000000    0.000   0  0  1  1  1  0
   2     100.000000       0.000000       0.000000    0.000   0  1  1  1  1  0
   3     200.000000       0.000000       0.000000    0.000   0  0  1  1  1  0
   4     300.000000       0.000000       0.000000    0.000   0  0  1  1  1  0
   5     400.000000       0.000000       0.000000    0.000   0  0  1  1  1  0
   6     500.000000       0.000000       0.000000    0.000   0  1  1  1  1  0
   7     600.000000       0.000000       0.000000    0.000   0  1  1  1  1  0
   8     700.000000       0.000000       0.000000    0.000   0  0  1  1  1  0
   9     800.000000       0.000000       0.000000    0.000   0  0  1  1  1  0
  10     100.000000      37.500000       0.000000    0.000   0  0  1  1  1  0
  11     200.000000      75.000000       0.000000    0.000   0  0  1  1  1  0
  12     300.000000     112.500000       0.000000    0.000   0  0  1  1  1  0
  13     400.000000     150.000000       0.000000    0.000   0  0  1  1  1  0
  14     500.000000     112.500000       0.000000    0.000   0  0  1  1  1  0
  15     600.000000      75.000000       0.000000    0.000   0  0  1  1  1  0
  16     700.000000      37.500000       0.000000    0.000   0  0  1  1  1  0
F R A M E   E L E M E N T   D A T A					(local)
 Elmnt  J1    J2     Ax   Asy   Asz    Jxx     Iyy     Izz       E       G roll  density
   1     1     2   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   2     2     3   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   3     3     4   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   4     4     5   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   5     5     6   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   6     6     7   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   7     7     8   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   8     8     9   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
   9     2    10   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  10     3    11   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  11     4    12   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  12     5    13   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  13     6    14   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  14     7    15   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  15     8    16   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  16     3    10   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  17     4    11   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  18     5    12   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  19     5    14   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  20     6    15   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  21     7    16   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  22     1    10   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  23    10    11   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  24    11    12   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  25    12    13   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  26    13    14   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  27    14    15   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  28    15    16   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
  29    16     9   10.0   1.0   1.0    1.0     1.0     0.0 210000.0 80000.0   0 7.85e-006
 Neglect shear deformations.
 Neglect geometric stiffness.

L O A D   C A S E   1   O F   1  ... 
  Gravity X =  0.0    Gravity Y =  0.0    Gravity Z =  0.0 
  7 concentrated loads
  0 uniformly distributed loads
  0 trapezoidally distributed loads
  0 concentrated point loads
  0 temperature loads
  0 prescribed displacements
N O D A L   L O A D S  +  E Q U I V A L E N T   N O D A L   L O A D S  (global)
 Node        Fx          Fy          Fz          Mxx         Myy         Mzz
   10       0.000   -2000.000       0.000       0.000       0.000       0.000
   11       0.000   -2000.000       0.000       0.000       0.000       0.000
   12       0.000   -2000.000       0.000       0.000       0.000       0.000
   13       0.000   -2000.000       0.000       0.000       0.000       0.000
   14       0.000   -2000.000       0.000       0.000       0.000       0.000
   15       0.000   -2000.000       0.000       0.000       0.000       0.000
   16       0.000   -2000.000       0.000       0.000       0.000       0.000

E L A S T I C   S T I F F N E S S   A N A L Y S I S   via  L D L'  decomposition
L O A D   C A S E   1   O F   1  ... 

N O D E   D I S P L A C E M E N T S  					(global)
 Node    X-dsp       Y-dsp       Z-dsp       X-rot       Y-rot       Z-rot
    1    0.292386    0.313408    0.0         0.0         0.0        -0.002586
    2    0.292386    0.0         0.0         0.0         0.0        -0.004830
    3    0.292388   -0.993820    0.0         0.0         0.0        -0.007049
    4    0.452187   -1.160484    0.0         0.0         0.0         0.000819
    5    0.580597   -0.808159    0.0         0.0         0.0         0.004777
    6    0.498793    0.0         0.0         0.0         0.0         0.002964
    7    0.371809    0.0         0.0         0.0         0.0        -0.006179
    8    0.371808   -0.863795    0.0         0.0         0.0        -0.005314
    9    0.371808   -1.315090    0.0         0.0         0.0        -0.003963
   10    0.440160   -0.080658    0.0         0.0         0.0        -0.006008
   11    0.604784   -1.038763    0.0         0.0         0.0        -0.004121
   12    0.484070   -1.133999    0.0         0.0         0.0         0.000807
   13    0.334722   -0.895640    0.0         0.0         0.0         0.003753
   14    0.487530   -0.328251    0.0         0.0         0.0         0.003109
   15    0.669196   -0.109549    0.0         0.0         0.0        -0.002957
   16    0.541044   -0.863795    0.0         0.0         0.0        -0.005930
F R A M E   E L E M E N T   E N D   F O R C E S				(local)
 Elmn