Koding Optimasi
import numpy as np from scipy.optimize import minimize
def calc_drag(x):#drag
x1 = x[0] drag = 21.185*x1**2-125.62*x1 + 143.69 return drag
def calc_lift(x): #lift
x1 = x[0] lift = -3.5089*x1**2 + 34.626*x1 - 43.619 return lift
def objective(x): #sudut yang diminimalkan
return calc_drag(x)
def constraint1(x): #variable SUDUT yang meminimalkan persamaan garis drag
return 90 - calc_drag(x)
def constraint2(x): #variable SUDUT yang meminimalkan persamaan garis lift
return 90 - calc_lift(x)
con1=({'type':'ineq','fun':constraint1}) con2=({'type':'ineq','fun':constraint2}) cons = (con1,con2)
x1_guess = 50
x0 = np.array([x1_guess])
sol = minimize(objective,x0, method='SLSQP',constraints=cons, options={'disp':True})
xopt = sol.x forceopt = -sol.fun
dragopt = calc_drag(xopt) # drag optimal liftopt = calc_lift(xopt) # lift optimal
print ('sudut optimal = '+str(-xopt[0])) print ('total force optimal = '+str(forceopt)) print ('drag force optimal = '+str(-dragopt)) print ('lift force optimal = '+str(liftopt))