Evi Elisa Ambarita

From ccitonlinewiki
Jump to: navigation, search

Pendahuluan Komputasi Teknik

I. Pengertian

Komputasi teknik adalah suatu kegiatan menambah, kurang, kali, bagi angka-angka yang disebut numerik dari eksak dengan menggunakan komputer. Inti berfikir dalam pemograman adalah input-proses-output. Dimana algoritma manusia dalam dipindahkan dalam bentuk algoritma computer, yang disebut dengan bahasa pemograman.


II. Tujuan Pembelajaran

1. Mampu memahami konsep-konsep dan prinsip-prinsip didalam pelajaran komputasi teknik, seperti konsep iterasi, konsep error (floating point error), dsb.

2. Mampu menerapkan pemahaman tersebut dalam menyelesaikan masalah didalam masyarakat

3. Memiliki pengenalan diri yang lebih tentang muhasabah, skill, value, dsb.

Quiz

Kuis1evi.JPG Kuis2evi.JPG

Model Komputasi Teknik

Pengerjaan skripsi saya menggunakan perangkat lunak inventor yang didasarkan pada Finite Element Method (FEM) untuk stress analysis. FEM adalah model perhitungan numerik yang menemukan perkiraan solusi untuk masalah persamaan differensial parsial dan integrasi lainnya yang dihasilkan dari hasil diskritisasi benda kontinum. Apa yang dilakukan FEM adalah membagi sebuah masalah besar menjadi bagian-bagian yang lebih kecil dan sederhana. Dalam Autodesk Inventor Stress Analysis, itu membutuhkan struktur yang complex dan mengubahnya menjadi bagian-bagian lebih kecil (meshing process) dan kemudian menyelesaikan persamaan dengan sistem persamaan yang memiliki input yang berbeda-beda, seperti constraints, materials, and loads.

In stress analysis, the weak form is called the principle of virtual work.

Finite Element Equation.JPG

dimana,

w = deflection

u = displacement

A = area

E = young’s modulus

b = axial loading

Untuk persamaan lainnya terkait Finite Element Analysis dapat dilihat pada tabel dibawah ini,

Full Finite Element Equation.JPG

source: https: //www. simscale.com/docs/content/simwiki/fea/whatisfea.html

Optimasi Kebutuhan Energi Manusia

Sebagai unit dari energi, kalori mengacu pada energi yang diperoleh dari makanan dan minuman yang kita konsumsi setiap hari. Kalori sangat penting bagi tubuh manusia. Tanpa kalori, sel-sel dalam tubuh akan mati, dan organ-organ vital seperti jantung dan paru-paru tidak akan mampu melaksanakan fungsi dasarnya.

Di Indonesia, berdasarkan rekomendasi Angka Kecukupan Gizi (AKG) dari Kementerian Kesehatan RI, rata-rata kebutuhan untuk pria usia 30 – 49 tahun adalah 2625 kkal per hari. Sedangkan perempuan usia 30 – 49 tahun adalah 2150 kkal per hari, demikian seperti dikutip dari laman depkes.go,id.

Menghitung Kalori

Terdapat dua jenis kalori, yaitu kalori kecil yang ditulis dalam satuan “kal” dan kalori besar atau “kilokalori” (kkal), dengan perhitungan 1 kkal sama dengan 1.000 kal. Cara menghitung kalori yang kita butuhkan menurut P2PTM Kemenkes RI sangat sederhana, karena hanya berdasarkan jenis kelamin dan tinggi badan. Sebelum menghitung, kita harus mengetahui terlebih dahulu tinggi badan (TB) dalam sentimenter dan Berat Badan Ideal (BBI) dengan rumus sebagai berikut:

BBI = (TB-100) – (10% x (TB – 100))

Selanjutnya, kita dapat hitung Kebutuhan Kalori Basal (KKB) atau Basal Metabolic Rate (BMR). KKB merupakan kebutuhan kalori yang dibutuhkan oleh tubuh untuk metabolisme basal, yakni metabolisme yang wajib dilakukan mahluk hidup walaupun tidak membutuhkan energi. Ini berarti metabolisme tubuh akan tetap berjalan meskipun dalam keadaan tidur atau tidak melakukan apa-apa. Berikut adalah rumus menghitung angka KKB:

KKB Laki-laki = 30 kkal x BBI

KKB Perempuan = 25 kkal x BBI

Menghitung Kebutuhan Kalori Total (KKT)

Kebutuhan kalori total adalah jumlah kebutuhan kalori tubuh ditambah dengan jumlah kalori saat melakukan aktivitas fisik. Kita mengenal tiga jenis aktivitas, yaitu

1. Aktivitas ringan seperti membaca (10%), menyetir mobil (10%), kerja kantoran (10%), mengajar (20%), berjalan (20%).

2. Aktivitas sedang: kerja rumah tangga (20%), jalan cepat (30%), bersepeda (30%).

3. Aktivitas berat: aerobik (40%), mendaki (40%), dan jogging (40%)

Rumus KKT = KKB + Aktivitas Fisik - Faktor Koreksi

Faktor koreksi adalah sebagai berikut:

Usia 40 - 59 tahun, nilai koreksinya minus 5%

Usia 60 - 69 tahun, nilai koreksinya minus 10%

Usia >70 tahun, nilai koreksinya minus 20%


Resource: https:// www.anlene.com/id/ms/berapa-banyak-kalori-yang-anda-butuhkan-setiap-hari.html

9 Maret 2020

Berikut tahapan dalam menganalisa suatu masalah:

1. Initial thinking (analisis) untuk mengidentifikasi masalah (objektif) yang akan diselesaikan, dapat berupa masalah terstruktur yakni terkait SOP, dan unstructured issue terkait modifikasi.

2. Mengembangkan rumusan (permodelan matematis) yang mengandung asumsi (tergantung pengetahuan, ilmu, dan pengalaman kita), dimana asumsi sama dengan batasan masalah.

3. Pengumpulan data yang dibutuhkan untuk menyelesaikan permodelan matematis diatas.

4. Simulasi = menjalankan atau mengeksekusi model (constraint) yang kita buat dengan suatu variabel bebas

5. Verifikasi = resolve the equation right, menguji apakah model yang dilakukan tidak ada kesalahan numerik, contohnya kesalahan ngitung, pada proses meshing

6. Validasi = resolve the right equation, menguji kebenaran / keaktualan dari hasil simulasi tadi

7. Result dan discussion

8. Recommendation

UTS

Video presentasi

Video presentasi hasil belajar terkait pengetahuan (konsep/teori) dan keterampilan (menggunakan komputasi teknik)


Laporan tugas optimasi

Laporan hasil tugas optimasi kebutuhan energi manusia.

Berdasarkan hasil diskusi kelas pada ( http://air.eng.ui.ac.id/index.php?title=Optimasi_Sistem_Energi_pada_Manusia ) ini, berikut optimasi kebutuhan energi saya pribadi selama seminggu (March 16th - 22nd),

Kebutuhan kalori yang saya butuhkan dalam 1 minggu:

Evi16.JPG Evi17.JPG Evi18.JPG Evi19.JPG Evi20.JPG Evi21.JPG Evi22.JPG

Kebutuhan listrik yang saya butuhkan dalam 1 minggu:

Evi23.JPG

Sehingga diperoleh total energi dan total biaya yang saya butuhkan dalam seminggu:

Evi30.JPG

Dan menghasilkan grafik sebagai berikut:

Evi33.JPG


Quiz Oscillating dynamic system

Memverifikasi sebuah sistem dinamik berosilasi tanpa gesekan (fig. 4.15) dengan menggunakan metode numerik dan metode analitik. Selain itu, terdapat 2 metode numerik yang akan digunakan, yakni standard numerical solution (persamaan 4.47 dan 4.48) dan a magic fix of a numerical method (persamaan 4.49 dan 4.50).

Osilasievi1.JPG

Gambar diatas menjelaskan suatu benda dengan massa m melekat/dikaitkan pada pegas dan bergerak sepanjang garis tanpa gesekan. Ketika pegas diregangkan (atau dikompresi), gaya pegas menarik (atau mendorong) body (penampang m) kembali dan bekerja "melawan" gerakan, misalkan x (t) adalah posisi body pada sumbu x, dimana body bergerak. Pegas tidak direntangkan ketika x= 0, sehingga gaya adalah nol, dan x= 0 karenanya posisi keseimbangan bodi. Gaya pegas adalah -kx, dimana k adalah konstanta yang diukur. Kami berasumsi bahwa tidak ada gaya lain (mis., Tidak ada gesekan). Hukum kedua Newton menyatakan F=ma kemudian memiliki F=-kx dan a=x",

-kx = mx" (4.41)

sehingga dapat dituliskan

x" + ω^2 x = 0 (4.42)

Persamaan (4.42) adalah persamaan diferensial orde kedua, dan oleh karena itu kita memerlukan dua kondisi awal, satu pada posisi x(0) dan satu pada kecepatan x’(0).

x (0) = 1,5 dan x’(0) = 0

Untuk mengendalikan turunan orde dua menggunakan metode numerik, cara yang dapat kita tuliskan pada persamaan 4.42 sebagai sebuah sistem orde pertama dari 2 persamaan turunan. Kita memperkenalkan u=x dan v=x'=u' sebagai 2 fungsi baru yang tidak diketahui. Dua persamaan yang sesuai muncul dari definisi v=u' dan persamaan asal (4.42):

u' = v (4.43)

v' = -ω²u (4.44)

maka u"=v' untuk menghilangkan turunan orde kedua dari hukum kedua newton.

Dengan menggunakan metode numerik pertama, yakni standard numerical solution dengan persamaan-persamaan berikut:

u^(n+1) = u^n + ∆t v^n (4.47)

v^(n+1) = v^n - ∆t ω^2 u^n (4.48)

Selain itu, terdapat juga metode numerik kedua yang anggap lebih akurat, disebut a magic fix of the numerical method dengan mengganti u^n untuk persamaan kedua menjadi u^(n+1) dari persamaan pertama, sehingga:

u^(n+1) = u^n + ∆t v^n (4.49)

v^(n+1) = v^n - ∆t ω^2 u^(n+1) (4.50)

dimana diketahui ω = 2,5 rad/s dan ∆t = 0,05 s, maka dilakukan perhitungan sebagai berikut.

Selanjutnya dilakukan verifikasi antara setiap metode numerik diatas terhadap metode analitik, dimana persamaan-persamaan untuk metode analitik adalah sebagai berikut:

u = x cos ⁡ωt

v = -x ω cos ⁡ωt

yang perhitungan detail nya dapat juga dilihat pada lampiran (ms.excel).

Sehingga diperoleh hasil yang merupakan grafik sebagai berikut:


Osilasievi2.JPG

Osilasievi3.JPG


Dari kedua grafik diatas dapat dilihat jelas bahwa metode numerik yang standard dengan menggunakan persamaan 4.47 dan 4.48 jauh dari kata akurat, dikarenakan hasil yang didapat dari metode ini (grafik biru) sangat berbeda dengan hasil dari metode analitik (grafik abu-abu). Oleh karena itu, metode numerik yang disebut a magic fix for a numerical method perlu dilakukan, dengan hasil sebagai berikut:


Osilasievi4.JPG

Osilasievi5.JPG


Dari kedua grafik diatas, dapat dilihat bahwa metode numerik ini (grafik kuning) memiliki tingkat keakurasian yang sangat baik dengan pemverifikasian terhadap metode analitik (grafik hijau). Dengan demikian, disimpulkan bahwa a magic fix for a numerical method telah terverifikasi terhadap metode analitik yang mana dapat mewakili metode analitik. untuk menentukan nilai u dan v.

Artikel 1, OSCILLATING 1-D DYNAMIC SYSTEM

Pendahuluan

Artikel ini akan membahas penyelesaian permasalahan oscillating 1-D dynamic system pada system damping sesuai gambar di bawah. Pada system di bawah terdapat sebuah massa yang dihubungkan dengan 3 spring, dan 1 dashpot. System tersebut fix pada 2 boundary sisi kiri dan kanan.

Artikelkomtekevi1.JPG

Penyelesaian dari permasalahan tersebut akan dilakukan dengan 3 metode, yang kemudian akan dibandingkan hasil dari perhitungan pada tiap metode tersebut. Metode yang digunakan yaitu: analitikal, numerik, dan simulasi. Pada metode analitikal dilakukan tinjauan gaya aksi – reaksi pada free body diagram (FBD) yang muncul dari eksitasi yang diberikan. Kemudian untuk penyelesaian metode numerik akan dilakukan iterasi dengan bantuan software Microsoft Excel menggunakan Forward Euler. Sedangkan untuk proses simulasi akan dilakukan dengan bantuan software MATLAB.

Metode

Metode Analitik

Free Body Diagram (FBD):

• Tinjauan massa:

Artikelkomtekevi2.JPG

• Tinjauan titik: (diantara c1, k2, dan k3)

Artikelkomtekevi3.JPG

Diketahui:

Artikelkomtekevi4.JPG

Maka persamaan 1 dan 2 dapat dituliskan kembali menjadi;

Persamaan 1

Artikelkomtekevi5.JPG

Persamaan 2

Artikelkomtekevi6.JPG

Penyelesaian

Asumsi

Artikelkomtekevi7.JPG

Karena pada persamaan 5 masih terdapat ̇ y maka subtitusi persamaan 6 ke persamaan 5, sehingga didapatkan nilai ̇ z sebagai berikut;

Artikelkomtekevi8.JPG

Penyelesaian menggunakan matrix;

Artikelkomtekevi9.JPG

Maka didapatkan nilai λ sebesar

Artikelkomtekevi10.JPG

Sehingga didapatkan persamaan

Artikelkomtekevi11.JPG

Jika diasumsikan nilai C1,C2,dan C3 adalah 1, 2 dan 3 maka;

Artikelkomtekevi12.JPG

Nilai x untuk t = 0 s, t = 1 s, dan t = 10 s adalah

Artikelkomtekevi13.JPG

Mencari nilai yh dengan mensubtitusi nilai xh ke dalam persamaan ̇ z=-x+3y, di mana nilai ̇ z = ̈ x.

Mencari nilai ̇x;

Artikelkomtekevi14.JPG

Nilai ̇ x untuk t = 0 s, t = 1 s, dan t = 10 s adalah

Artikelkomtekevi15.JPG

Mencari nilai ̈ x;

Artikelkomtekevi16.JPG

Persamaan ̈ x di atas dapat disederhanakan menjadi;

Artikelkomtekevi17.JPG

Nilai ̈ x untuk t = 0 s, t = 1 s, dan t = 10 s adalah

Artikelkomtekevi18.JPG

Mencari nilai y;

Artikelkomtekevi19.JPG

Persamaan yh dapat disederhanakan menjadi;

Artikelkomtekevi20.JPG

Nilai y untuk t = 0 s, t = 1 s, dan t = 10 s adalah

Artikelkomtekevi21.JPG

Mencari nilai ̇ y;

Artikelkomtekevi22.JPG

Nilai ̇ y ketika t = 0 s, t = 1 s, dan t = 10 s adalah

Artikelkomtekevi23.JPG


Metode Numerik

Metode ini dilakukan dengan menggunakan software Microsoft Excel. Parameter input yang harus diketahui yaitu x pada t = 0 s, y pada t = 0 s, dan selisih penambahan waktu (∆t). Parameter input x dan y ini dapat juga disebut dengan initial condition. Lalu kemudian dilakukan iterasi sesuai dengan ∆t sampai waktu yang ditentukan. Nilai parameter input tersebut didapat dengan cara analitis seperti sudah disebut di atas, yaitu x((t=0))=4 m; y((t=0))=5.9 m; dan selisih waktu ∆t=0.1 second.

Seperti sudah disebutkan sebelumnya bahwa penyelesaiannya menggunakan Forward Euler, yaitu sebagai berikut:

Artikelkomtekevi24.JPG

Simulasi

Simulasi dilakukan dengan bantuan software MATLAB. Adapun agar simulasi dapat berjalan, maka perlu diberikan input coding pada software MATLAB yang isinya sebagai berikut.

 % Calculates the position, velocity, and acceleration as a function of time
 % of a system of carts connected by springs and dashpots. Euler's Method is
 % used to solve the equations of motion numerically.
 clear all; close all; clc;
 tic
 % Problem parameters
 k1=1; % cart 1 spring constant (N/m)
 k2=2; % cart 1 spring constant (N/m)
 b1=1; % cart 1 viscous damping coefficient (kg/s)
 m1=1; % cart 1 mass (kg)
 k3=3; % cart 1 spring constant (N/m)
 x10=4; % cart 1 initial position (m)
 x20=5.9; % y movement initial position (m)
 v10=-2.135; % cart 1 initial velocity (m/s)
 v20=-35.36; % cart 2 initial velocity (m/s)
 % Set time step stuff
 simTime=60; % simulation time (s)
 tStep=0.1; % simulation time step
 iterations=simTime/tStep;
 t=0:iterations;
 % Pre-allocate variables for speed and add initial conditions
 x1=zeros(iterations,1);
 x1(1,:)=x10;
 x2=zeros(iterations,1);
 x2(1,:)=x20;
 v1=zeros(iterations,1);
 v1(1,:)=v10;
 v2=zeros(iterations,1);
 v2(1,:)=v20;
 a1=zeros(iterations,1);
 a1(1,:)=((0-(k1*x10)-b1*(v10+v20)-k2*(x20+x10))/m1);
 % Solve the ODE's with Euler's Method
 for n=2:(iterations+1)
 x1(n,:)=x1(n-1,:)+v1(n-1,:)*tStep; % cart 1 position
 x2(n,:)=x2(n-1,:)+v2(n-1,:)*tStep; % cart 2 position
 v1(n,:)=v1(n-1,:)+a1(n-1,:)*tStep; % cart 1 velocity
 v2(n,:)=-(2*x1(n,:)+5*x2(n,:)+v1(n,:))
 % Find cart accelerations
 a1(n,:)=((0-k1*x1(n,:))-b1*(v1(n,:)+v2(n,:))-k2*(x2(n,:)+x1(n,:))/m1);
 end
 % Plot results
 subplot(3,1,1)
 hold on;
 plot(t',x1,'r')
 plot(t',x2,'m')
 ylabel('Position (m)')
 title('Position, Velocity, & Acceleration as a Function of Time')
 legend('Pergerakan ke arah X','Pergerakan ke arah Y')
 subplot(3,1,2)
 hold on;
 plot(t',v1,'b')
 plot(t',v2,'c')
 ylabel('Velocity (m/s)')
 legend('Pergerakan ke arah X','Pergerakan ke arah Y')
 subplot(3,1,3)
 hold on;
 plot(t',a1,'g')
 ylabel('Acceleration (m/s^2)')
 xlabel('time (1 = 0.01 detik)')
 legend('Pergerakan ke arah X','Pergerakan ke arah Y')
 toc


Hasil

Artikelkomtekevi25.JPG

Gambar 2. Grafik velocity (dx/dt) perbandingan analitik, numerik, dan simulasi

Artikelkomtekevi26.JPG

Gambar 3. Grafik acceleration (d^2x/dt^2) perbandingan analitik, numerik, dan simulasi

Artikelkomtekevi27.JPG

Gambar 4. Grafik velocity (dy/dt) perbandingan analitik, numerik, dan simulasi

Selanjutnya, untuk memverifikasi hasil numerik menggunakan metode euler yang dijelaskan diatas, digunakan metode Artificial Neural Networks (ANN) pada perangkat lunak matlab. Berikut sedikit pengenalan tentang ANN yang dapat kita temui dari beberapa sumber di internet. ANN adalah beberapa lapisan jaringan saraf (neural network) yang terhubung secara keseluruhan yang dapat dilihat dari gambar dibawah ini. Setiap node pada setiap lapisan terhubung ke setiap node dari lapisan selanjutnya. Jaringan dibuat lebih dalam dengan menambah jumlah lapisan tersembunyi (hidden layer).

Artikelkomtekevi28.JPG

Jika salah satu hidden layer atau node output diperbesar, maka akan ditemukan gambar dibawah ini.

Artikelkomtekevi29.JPG

Node tertentu mengambil jumlah bobot dari inputnya, dan meneruskannya melalui fungsi aktivasi non-linear. Ini merupakan output dari node yang kemudian menjadi input dari node yang lain pada layer selanjutnya. Sinyal mengalir dari kiri ke kanan, dan output akhir dihitung dengan cara melakukan prosedur ini untuk semua node. Melatih jaringan saraf berarti mempelajari bobot yang terkait dengan semua edge.

Metode ANN ini digunakan untuk melatih data-data yang didapat dari numerik, dimana nilai posisi pada sumbu x dan y digunakan sebagai nilai input, dan nilai kecepatan pada sumbu x (u) dan sumbu y (v) yang merupakan hasil diferensial dari posisi digunakan sebagai nilai target. Data yang di training sebanyak 400 data.

Artikelkomtekevi30.JPG

Dengan demikian, diperoleh hasil yang dapat dilihat pada gambar diatas, dengan nilai R sebesar 0,99996 yang berarti data yang didapat dari metode Euler terverifikasi secara baik dengan persamaan yang dihasilkan dari metode ANN pada matlab.

Kesimpulan

Dari hasil yang sudah didapat untuk metode analitik, numerik, dan simulasi berikut beberapa hal yang dapat disimpulkan: a) Hasil perhitungan numerik terhadap simulasi memiliki nilai yang berimpit. Hal ini dikarenakan, pada dasarnya simulasi yang dilakukan dengan MATLAB, menggunakan cara yang sama dengan numerik, hanya saja pada numerik persamaan-persamaannya harus dirubah menjadi 3 persamaan dengan orde 1. Sedangan pada simulasi, persamaan dari FBD langsung menjadi input pada MATLAB. b) Hasil perhitungan numerik dan simulasi berbeda dengan metode analitik. Seperti sudah disebutkan pada materi perkuliahan sebelum ini, bahwa pada metode Forward Euler terdapat hal yang harus diperhatikan pada perkembangan amplitudonya. c) Hasil metode forward euler telah terverifikasi dengan metode Artificial Neural Networks (ANN) yang dapat dilihat dari nilai R sebesar 0,99996 (mendekati 1) dari persamaan output metode ANN menggunakan software matlab.

Artikel 2, Simplified Finite Elements model to represent Mass-Spring structures in dynamic simulation

Kasus ini menjelaskan sebuah sistem 2 cart spring-mass-damper. Persamaan gerak untuk system 2 degree of freedom yang digunakan adalah Newtonian mechanics dan diselesaikan secara numerik pada matlab.

FBD-MS-FES.jpg

 % Calculates the position, velocity, and acceleration as a function of time
 % of a system of carts connected by springs and dashpots. Euler's Method is
 % used to solve the equations of motion numerically.
 clear all; close all; clc;
 tic

 % Problem parameters
 k1=50; % cart 1 spring constant (N/m)
 k2=50; % cart 2 spring constant (N/m)
 b1=3; % cart 1 viscous damping coefficient (kg/s)
 b2=3; % cart 2 viscous damping coefficient (kg/s)
 m1=5; % cart 1 mass (kg)
 m2=5; % cart 2 mass (kg)
 x10=1; % cart 1 initial position (m)
 x20=-1; % cart 2 initial position (m)
 v10=0; % cart 1 initial velocity (m/s)
 v20=0; % cart 2 initial velocity (m/s)

 % Set time step stuff
 simTime=10; % simulation time (s)
 tStep=0.001; % simulation time step
 iterations=simTime/tStep;
 t=0:iterations;

 % Pre-allocate variables for speed and add initial conditions
 x1=zeros(iterations,1);
 x1(1,:)=x10;
 x2=zeros(iterations,1);
 x2(1,:)=x20;
 v1=zeros(iterations,1);
 v1(1,:)=v10;
 v2=zeros(iterations,1);
 v2(1,:)=v20;
 a1=zeros(iterations,1);
 a1(1,:)=-(b1*v10-b2*(v20-v10)+k1*x10-k2*(x20-x10))/m1;
 a2=zeros(iterations,1);
 a2(1,:)=-(b2*(v20-v10)+k2*(x20-x10))/m2;
 % Solve the ODE's with Euler's Method
 for n=2:(iterations+1)
 x1(n,:)=x1(n-1,:)+v1(n-1,:)*tStep; % cart 1 position
 x2(n,:)=x2(n-1,:)+v2(n-1,:)*tStep; % cart 2 position
 v1(n,:)=v1(n-1,:)+a1(n-1,:)*tStep; % cart 1 velocity
 v2(n,:)=v2(n-1,:)+a2(n-1,:)*tStep; % cart 2 velocity
 % Find cart accelerations
 a1(n,:)=-(b1*v1(n,:)-b2*(v2(n,:)-v1(n,:))+k1*x1(n,:)-k2*(x2(n,:)-x1(n,:)))/m1;
 a2(n,:)=-(b2*(v2(n,:)-v1(n,:))+k2*(x2(n,:)-x1(n,:)))/m2;
 end


 % Plot results
 subplot(3,1,1)
 hold on;
 plot(t',x1,'r')
 plot(t',x2,'m')
 ylabel('Position (m)')
 title('Position, Velocity, & Acceleration as a Function of Time')
 legend('Cart 1','Cart 2')
 subplot(3,1,2)
 hold on;
 plot(t',v1,'b')
 plot(t',v2,'c')
 ylabel('Velocity (m/s)')
 legend('Cart 1','Cart 2')
 subplot(3,1,3)
 hold on;
 plot(t',a1,'g')
 plot(t',a2,'y')
 ylabel('Acceleration (m/s^2)')
 xlabel('time (iterations)')
 legend('Cart 1','Cart 2')

 toc

Artikelkeduaevi.jpg

Akan tetapi pada kasus ini, pembahasan yang dilakukan masih dengan Mass-Spring method. Untuk Finite Element Simplified (FES), akan diupdate pada kesempatan selanjutnya.

Source: https:// www.youtube.com/ watch?v=N524t6wdlcM&feature=youtu.be

Artikel 3 ANALISIS MASS SPRING PADA BANGUNAN

PENDAHULUAN

Sistem pemodelan yang digunakan dalam struktur bangunan ini adalah pemodelan tiga derajat kebebasan (3 DOF). Gambar 1 menunjukkan model struktur bangunan bertingkat yang ditandai dengan adanya perpindahan sebesar x2 dan x3 karena pengaruh beban input gaya eksitasi dari shaking table. Sedangkan untuk pemodelan matematis, diperoleh persamaan dari free body diagram sistem yang akan dianalisa.

Bangunanevi1.JPG

Untuk free body diagram dan persamaan massa shaking table (M1) adalah :

Bangunanevi2.JPG

Bangunanevi3.JPG

Setelah mendapatkan nilai parameter yang dibutuhkan untuk simulasi, Input yang digunakan yaitu input sinusoidal dengan frekuensi operasi 7 Hz atau 43,982 rad/s.

Untuk menyelesaikan persamaan gerak di atas maka dilakukan penyederhanaan persamaan menjadi 1 persamaan orde 6, dengan mengasumsikan x1 sebagai x, x2 sebagai y, dan x3 sebagai z, sehingga diperoleh persamaan,

Bangunanevi4.JPG

Persamaan 4 disubtitusikan kepersamaan 2 sehingga didapatkan persamaan,

Bangunanevi5.JPG

Untuk mencari nilai akar-akar dari persamaan di atas maka digunakan matlab untuk mempermudah perhitungan,

 p=[1.154 21.059 4153.743 42436.977 2396974.157 2858796.484 151595214.4];
 r=roots(p)
 r =
 -3.6221 +52.7481i
 -3.6221 -52.7481i
 -5.5262 +24.9446i
 -5.5262 -24.9446i
  0.0239 + 8.4846i
  0.0239 - 8.4846i

Bangunanevi6.JPG

Lalu dengan mengasumsikan nilai konstanta, A=-0.0005 B=0.0001 C=0.0001 D=-0.0002 E=0.00032 F=-0.009 G=0.00008 H=0.00001

Maka dengan menggunakan software MATLAB dapat dibuat grafik posisi terhadap waktu. Berikut coding yang menjadi input dalam MATLAB:

 syms x t A B C D E F
 A=-0.0005
 B=0.0001
 C=0.0001
 D=-0.0002
 E=0.00032
 F=-0.009
 G=0.00008
 H=0.00001
 t=(1:100)/10
 x1 = exp(-3.62*t)*(A*sin(52.75*t) + B*cos(52.75*t)) + exp(5.53*t)* 
 (C*sin(24.94*t) + D*cos(24.94*t)) + exp(0.024*t)*(E*sin(8.48*t) + 
 F*cos(8.48*t)) + G*sin(43.982*t) + H*cos(43.982*t)
 % Plot results
 subplot(1,1,1)
 hold on;
 plot(t',x1,'r')
 ylabel('Position (m)')

Bangunanevi7.JPG

Gambar 5 Grafik respon posisi terhadap waktu

Grafik di atas menunjukan pengaruh getaran pada bagian bawah struktur pemodelan bangunan di mana perubahan arah gerak pada bagian bawah struktur membentuk pola sinusoidal yang menandakan adanya gerak bolak-balik pada struktur tersebut.

KESIMPULAN

Dalam permasalahan analisis gerak (perubahan arah, kecepatan dan percepatan) dapat dilakukan dengan metode lain berupa FES, namun pada artikel ini pemodelan FES belum dilakukan. Artikel ini hanya membahan mass-spring (MS) model yang terjadi pada suatu sistem pemodelan bangunan yang diberikan getaran. Sehingga dapat dilihat perilaku gerak bangunan sebagai respon dari adanya getaran yang diberikan.

REFERENSI

• Syaldiles Putri Indahdinata, Analisis Pengaruh Perubahan Cross Sectional Area Dan Posisi Peletakan Tuned Liquid Column Damper Terhadap Respon Dinamis Model Struktur Bangunan Bertingkat, Departemen Teknik Mesin FTI-ITS Surabaya, 2018.

UAS

Uasevi1.jpg

Uasevi2.JPG

Uasevi3.png