Difference between revisions of "Analytical solution of laminar flow through the parallel- plate"

From ccitonlinewiki
Jump to: navigation, search
(Artikel 3 hasil diskusi : Governing Equation pada Aliran)
(Artikel .... hasil diskusi : judul .....)
Line 60: Line 60:
 
Raditya Aryaputra Adityawarman (1806181691)
 
Raditya Aryaputra Adityawarman (1806181691)
  
== Artikel .... hasil diskusi : judul .....==
+
== Artikel 4 hasil diskusi : Penggunaan Navier-Stokes untuk Aliran Laminer 2 Dimensi ==
 +
 
 +
Kasus ini membahas penggunaan governing equations, hukum kekekalan momentum, dan Navier-Stokes untuk mencari profil kecepatan suatu aliran
 +
 
 +
Dalam kasus dimana kecepatan vertikal (v) sama dengan nol dan komponen kecepatan horizontal (u) bergantung terhadap x,
 +
dapat dikatakan bahwa komponen u adalah fungsi dari y.
 +
 
 +
Hal ini dapat di buktikan  dengan menggunakan rumus kontinuitas dari persamaan Navier-Stokes untuk aliran dua dimensi;
 +
Du/dx + dv/dy = 0
 +
Du/dx + 0 = 0
 +
Du/dx = 0
 +
 
 +
Kemudian, dengan menggunakan kondisi ini pada rumus momentum x, diketahui bahwa
 +
D2u/dy2 = 1/μ dp/dx
 +
 
 +
'''Dapat disimpulkan bahwa ketentuan untuk kekalan momentum pada kasus ini adalah persamaan gaya shear dan pressure.'''
 +
 
 +
Dengan menggunakan dua kali integral, di dapatkan kecepatan horizontal u terhadap y ;
 +
U(y) = 1/2μ (dp/dx) y2 + C1y + C2
 +
 
 +
Dan kondisi batas untuk menentukan C1 serta C2 adalah ;
 +
U = 0 untuk y = H/2 (no slip)
 +
Du/dy = 0 untuk y = 0 (simetris)
 +
Untuk kondisi simetris, didapatkan C1 = 0.
 +
 
 +
Maksud dari kondisi no slip disini adalah fluida dianggap sebagai fluida viskos. Diasumsikan bahwa pada solid boundary, fluida akan memilii kecepatan 0 terhadap dinding pipa.  
 +
Menggunakan metode subtitusi, akan di dapatkan nilai C2 = -1/2μ (dp/dx) (H/2)2.
 +
 
 +
Dengannya profil kecepatan u(y) akan menjadi ;
 +
U (y) = 3/2 H2/12μ (-dp/dx) (1-(y2/(H/2)2)
 +
 
 +
Gradien kecepatan dp/dx disini bernilai negatif karena pressure berkurang disepanjang aliran. Hal ini disebabkan karena adanya pressure drop.
 +
 
 +
Untuk aplikasinya, soal ini dapat digunakan sebagai kasus simulasi untuk aliran air pada pipa secara dua dimensi.
 +
 
 +
 
 +
-Elita Kabayeva, 19065435486-

Revision as of 08:32, 15 April 2020

Studi kasus dan Terjemahan

Laminar flow through the parallel- plate analytical sol 1.png

Laminar flow through the parallel- plate analytical sol 2.png

Laminar flow through the parallel- plate analytical sol 5.png

Laminar flow through the parallel- plate analytical sol 6.png

Ref. Yijuan et. al, CFD - A Practical Approach, 1st ed., Elsevier

Terjemahan

Contoh 3.4 Anggaplah suatu aliran yang tunak, inkompresibel, dan laminar mengalir melewati pipa plat sejajar seperti yang diselidiki pada Contoh 3.2. Untuk fluida dengan properti yang konstan dan aliran berkembang penuh, Tentukan subjek profil kecepatan untuk kondisi batas di mana komponen vertikal v bernilai 0 di setiap titik.

== Artikel 1 hasil diskusi : Governing Equation pada Fluida

Konsep mekanika fluida pada soal ini adalah tentang governing equation. Gover Equation adalah sebuah persamaan yang mengatur gerak laku dari fluida atau persamaan atur. Ada 3 governing equation pada fluida, yaitu:

Hukum Konservasi Energi (de/dt = W + Q) => energi yang masuk pada sistem akan sama dengan yang keluar, dengan energi yang keluar dapat berupa kerja atau panas.

Hukum Konservasi Massa (dm/dt = 0) => massa yang masuk pada sistem akan sama dengan massa yang keluar atau tidak adanya perubahan massa terhadap waktu.

Hukum Konservasi Momentum (m dv/dt = ∑ F) => jika pada sistem diberikan sebuah gaya, maka akan terjadi perubahan kecepatan partikelnya terhadap waktu atau dapat menimbulkan percepatan.


Aplikasinya ketiga rumus tersebut adalah, dapat dijadikan acuan dasar dalam perhitungan mekanika fluida.


Ahmad Mohammad Fahmi (1806181836)

Artikel 2 hasil diskusi : Pengenalan Aliran Viscous dan Pengamatan Aliran Fluida dengan Pendekatan Analitikal

Aliran dapat mengalir pada plat datar, plat paralel, tempat terbuka, dan lain-lain. Tentu penggunaannya tergantung pada pemakaian dan kondisi. Yang akan kita bahas kali ini adalah aliran fluida pada plat paralel yang sekarang dapat kita asumsikan sebagai sebuah pipa. Aliran yang mengalir pada kondisi wadah-wadah seperti diatas dapat dibagi menjadi 3 jenis, yaitu aliran laminar, aliran transisi dan aliran turbulen. Kita dapat mengidentifikasikan jenis tersebut dari yang disebut Bilangan Reynolds. Bilangan Reynolds dapat dilogikakan sebagai rasio antara gaya inersia dengan gaya viskositasnya. Aliran turbulen didapat pada Bilangan Reynolds dibawah 2300, Aliran transisi pada 2300 – 4000, dan aliran turbulen pada Bilangan Reynolds lebih dari 4000. Aliran laminar dan aliran turbulent pun memiliki penggunaannya masing-masing. Pada suatu material fluida, kita dapat memperoleh kondisi jenis aliran dengan pengaturan kecepatannya, karena tentu viskositasnya tidak berubah. Solusi lain adalah dengan penggunaan material yang lain apabila kondisi tidak memungkinkan. Pendekatan analitikal pada pengamatan aliran fluida adalah dengan menggunakan persamaan-persamaan matematika non linear yang cukup rumit. Kita dapat menggunakan metode Governing Equation yang dapat ditemukan pada hukum konservasi momentum, konservasi energi, dan konservasi massa yang menjadi dasar pada mekanika fluida. Pada aliran di antara plat paralel, kita dapat mengasumsikan kecepatan partikel fluida yang menyentuh plat=0 atau mendekatinya (no slip boundary condition) yang diakibatkan oleh gaya antar molekul. Hal ini dapat mempermudah kita dalam perhitungan saat menggunakan boundary condition.


Boundary.JPG


Setiap material fluida akan berbeda-beda datanya untuk membentuk suatu jenis aliran. Pada suatu material fluida akan memiliki apa yang dinamakan “Critical Velocity” disinilah titik yang memisahkan dimana lapisan bergerak membentuk viscous/streamline flow dan apabila mulai melebihi partikel fluida akan mulai bergerak secara acak dan gerakan lapisan-lapisan secara paralel akan mulai berpancar.


Bolonni Nugraha/1806181741

Artikel 3 hasil diskusi : Governing Equation pada Aliran

Soal tersebut membahas mengenai governing equation. Governing Equation adalah persamaan yang mengatur gerak laku fluida, bisa juga disebut persamaan atur. Ada tiga persamaan mengenai semua pergerakan aliran fluida yang ada di alam. Persamaan itu diantaranya konservasi massa, konservasi momentum, dan konservasi energi.

  A. Konservasi massa adalah Massa sistem akan selalu konstan dari waktu ke waktu. Rumusnya: dm/dt = 0. Contoh sederhananya adalah pipa dengan luas yang kecil kecepatannya lebih besar dibanding pipa dengan luas yang lebih besar. Alasannya karena massa harus konstan, sehingga pada pipa dengan luas yang lebih kecil, aliran terdorong lebih cepat.
  B. Hukum kekekalan momentum adalah kekalnya momentum pada sepanjang aliran, bisa berubah ke bentuk gaya ataupun sebaliknya. Hukum kekekalan momentum merupakan turunan dari hukum newton 2, rumusnya: m dV/dt = ΣF. Ada tiga gaya yang mempengaruhi gerakan fluida, yaitu gaya karena perbedaan tekanan, gaya gravitasi, dan gaya akibat gesekan fluida.
  C. Konservasi energi membahas apabila sistem energi mengalami perubahan total harus diikuti perubahan dalam bentuk kerja dan panas. Rumusnya:  dE/dt = W + Q

Aplikasi dari governing equation bisa diaplikasikan pada berbagai perhitungan mekanika fluida, karena setiap bahan mempunyai hasil yang berbeda-beda terhadap gaya dan enrgi yang diterapkan. Misalnya memprediksi aliran udara di sekitar pesawat atau mobil agar menimbulkan drag yang sedikit sehingga lebih hemat dalam bahan bakar. Contoh lainnya adalah penyusutan plastik pada proses injeksi molding. Proses tersebut perlu diperhitungkan prediksi alirannya.

Raditya Aryaputra Adityawarman (1806181691)

Artikel 4 hasil diskusi : Penggunaan Navier-Stokes untuk Aliran Laminer 2 Dimensi

Kasus ini membahas penggunaan governing equations, hukum kekekalan momentum, dan Navier-Stokes untuk mencari profil kecepatan suatu aliran

Dalam kasus dimana kecepatan vertikal (v) sama dengan nol dan komponen kecepatan horizontal (u) bergantung terhadap x, dapat dikatakan bahwa komponen u adalah fungsi dari y.

Hal ini dapat di buktikan dengan menggunakan rumus kontinuitas dari persamaan Navier-Stokes untuk aliran dua dimensi; Du/dx + dv/dy = 0 Du/dx + 0 = 0 Du/dx = 0

Kemudian, dengan menggunakan kondisi ini pada rumus momentum x, diketahui bahwa D2u/dy2 = 1/μ dp/dx

Dapat disimpulkan bahwa ketentuan untuk kekalan momentum pada kasus ini adalah persamaan gaya shear dan pressure.

Dengan menggunakan dua kali integral, di dapatkan kecepatan horizontal u terhadap y ; U(y) = 1/2μ (dp/dx) y2 + C1y + C2

Dan kondisi batas untuk menentukan C1 serta C2 adalah ; U = 0 untuk y = H/2 (no slip) Du/dy = 0 untuk y = 0 (simetris) Untuk kondisi simetris, didapatkan C1 = 0.

Maksud dari kondisi no slip disini adalah fluida dianggap sebagai fluida viskos. Diasumsikan bahwa pada solid boundary, fluida akan memilii kecepatan 0 terhadap dinding pipa. Menggunakan metode subtitusi, akan di dapatkan nilai C2 = -1/2μ (dp/dx) (H/2)2.

Dengannya profil kecepatan u(y) akan menjadi ; U (y) = 3/2 H2/12μ (-dp/dx) (1-(y2/(H/2)2)

Gradien kecepatan dp/dx disini bernilai negatif karena pressure berkurang disepanjang aliran. Hal ini disebabkan karena adanya pressure drop.

Untuk aplikasinya, soal ini dapat digunakan sebagai kasus simulasi untuk aliran air pada pipa secara dua dimensi.


-Elita Kabayeva, 19065435486-