Irfan Rahadi Kurninato
السلام عليكم Irfan Rahadi Kurnianto - 1706036255
Contents
4 September 2019
Mengapa kita harus belajar kalkulus? kalkulus adalah mata kuliah dasar teknik. Mata kuliah kalkulus sangat berguna untuk membentuk logika agar mudah dalam belajar suatu hal lain
Tugas 1
11 September 2019
Bit Komputer Program Catur
coding bukan pelajaran anak fasilkom/elektro belajar python praktek programing dasar2 programing + pyhton programnya irfan t2 dikelas
18 September 2019
Tugas irfan 18 sep 19
25 September 2019
Tugas irfan 25 sep 19 catatan irfan 25 sep 19
2 Oktober 2019
Metode numerik adalah teknik-teknik yang digunakan untuk merumuskan masalah-masalah matematika agar dapat diselesaikan dengan operasi-operasi aritmatika (hitungan) biasa (tambah, kurang, kali, dan bagi). Secara harfiah metode numerik berarti cara berhitung dengan menggunakan angka-angka.
9 Oktober 2019
Metode Runge-Kutta Persamaan Diferensial Biasa (PDB) adalah persamaan yang melibatkan satu atau lebih turunan fungsi satu peubah. Solusi dari PDB adalah fungsi tertentu yang memenuhi persamaan tersebut.
kuis 16 Oktober 2019
program runge kutta
https://pastebin.com/GxfenTa3 # dibuat oleh irfan rahadi 1706036255 def TurunanY(x, y): #Fungsi Turunan Y return ((x**2 - 4*y)) xawal = 0 #boundary condition x awal soal yinit = 1 #boundary condition y awal soal x = 0.03 #nilai x yang ditanya h = 0.01 #delta yang digunakan angka = (int)((x - xawal)/h) #menghitung jumlah increment yg diperlukan for i in range(1, angka + 1): k1 = h * TurunanY(xawal, yinit) #rumus runge kutta k2 = h * TurunanY(xawal + 0.5 * h, yinit + 0.5 * k1) k3 = h * TurunanY(xawal + 0.5 * h, yinit + 0.5 * k2) k4 = h * TurunanY(xawal + h, yinit + k3) yinit = yinit + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4) #menjumlahkan nilai k1,k2,k3,k4 ke y' yang baru dan membaginya xawal = xawal + h #menambahkan xawal besarkan delta h print(yinit)
PROGRAM GAUSS from numpy import linalg import numpy as np a= np.array ([[0,0,2,1,2] ,[0,1,0,2,-1], [1,2,0,-2,1], [0,0,0,-1,1], [0,1,-1,1,-1]]) b= np.array ([[1], [1], [-4], [-2], [-1]]) c= np.array ([[0,0,2,1,2,1] ,[0,1,0,2,-1,1], [1,2,0,-2,1,-4], [0,0,0,-1,1,-2], [0,1,-1,1,-1,-1]]) print ("Matrix a " , a) print ("Matrix b ", b) print ("Matrixnya adalah:" , c) matsolve = linalg.solve (a,c) x1 = int(matsolve[0]) x2 = int(matsolve[1]) x3 = int(matsolve[2]) x4 = int(matsolve[3]) x5 = int(matsolve[4]) hasil= (x1, x2, x3, x4, x5) print ("Hasil nilai x1,x2,x3,x4,x5 :") print (hasil)
UTS 23 oktober
Video Muhasabah 3 A # Cara 1 m1 = eval(input("Massa Benda 1 ? ")) #menginput m1 m2 = eval(input("Massa Benda 2 ? "))#menginput m2 m3 = eval(input("Massa Benda 3 ? ")) #meninput m3 m4 = eval(input("Massa Benda 4 ? ")) g = eval(input("Gravitasi ? ")) #input g sinusa = ((m1+m2+m3)/m4)#hitung sin theta T1 = m1*sinusa*g #hitung T1 T2 = m2*sinusa*g + T1 #hitung T2 T3 = m3*sinusa*g + T2 #hitung T3 print("T1", T1) print("T2",T2) print("T3", T3) print("Sin theta = ", sinusa,"") #Cara 2 m1 = eval(input("Massa Benda 1 ? ")) m2 = eval(input("Massa Benda 2 ? ")) m3 = eval(input("Massa Benda 3 ? ")) m4 = eval(input("Massa Benda 4 ? ")) g = eval(input("Gravitasi ? ")) sinusa = ((m1+m2+m3)/m4) Matrex=[[1,0,0,m1*sinusa*g],[1,1,0,(2*m1+m2)*sinusa*g],[2,1,1,((2*(2*m1+m2))+m3)*sinusa*g]] #Matrix yg mau di gauss def PrintMatrix(Matrix): #untuk print for i in range(len(Matrix)): for j in range(len(Matrix[i])): print(Matrix[i][j],end="\t") print() def MultiplyRow(Row,Scalar): #untuk kali for i in range(len(Row)): Row[i]=Row[i]*Scalar def AddRow(Matrix,RowNR1,RowNR2,multi=1): #untuk tambah for i in range(len(Matrix[RowNR2])): Matrix[RowNR2][i]+=Matrix[RowNR1][i]*multi def SwitchRow(Matrix,RowNR1,RowNR2): #untuk tukar bufrow=Matrix[RowNR1] Matrix[RowNR1]=Matrix[RowNR2] Matrix[RowNR2]=bufrow return 0 def ZeroRowsBelow(Matrix,RowNR,CollumnNR): #untuk menghindari eror 0 for i in range(len(Matrix)-RowNR-1): if not(Matrix[RowNR][CollumnNR]==0): AddRow(Matrix,RowNR,i+1+RowNR,-float(Matrix[i+1+RowNR][CollumnNR])/Matrix[RowNR][CollumnNR]) #print(i) def SolveMatrix(Matrix): #untuk mensolve #Bring To Row-Echelon Form for i in range(len(Matrex)): ZeroRowsBelow(Matrex,i,i) #Make Row-Echelon 1 for i in range(len(Matrex)): if not(Matrex[i][i]==0): MultiplyRow(Matrex[i],1./Matrex[i][i]) #diulang lagi for i in range(len(Matrex)): for j in range(i): if not(Matrex[i][i]==0): AddRow(Matrex,i,j,-float(Matrex[j][i])/Matrex[i][i]) def IsRRowEchelon(Matrix): #cek selsai for i in range(len(Matrix)): pos=[1,0] if not(Matrix[i][i] in pos): return 0 return 1 def CheckForEqualRows(Matrix):#cek nilai newlist=[] for i in Matrix: if i not in newlist: newlist.append(i) return newlist MatrixNew=[] for j in range(len(Matrex)): RowNew=[] for i in range(len(Matrex[j])): RowNew.append(Matrex[j][i]) MatrixNew.append(RowNew) Matrex=MatrixNew PrintMatrix(Matrex) print() while True: SolveMatrix(Matrex) Matrex=CheckForEqualRows(Matrex) if IsRRowEchelon(Matrex): break PrintMatrix(Matrex)#print matrix print("") print("Solusinya") print("T1 = ",Matrex[0][3]) print("T2 = ",Matrex[1][3]) print("T3 = ",Matrex[2][3]) print("Sin Theta = ",Matrex[0][3]/(m1*g))
3 B cara 1 cd=eval(input("drag coefficient: ")) #input coef drag Vawal=0 #kondisi diam m=eval(input("mass (kg): ")) #massa a=eval(input("acceleration (m/s^2): ")) #perc Vakhir=eval(input("top speed (m/s): ")) #vtop fdrag=(cd*Vakhir**(3/2))/m #gayagesek Ftotal=a-fdrag Atotal = Ftotal #dibagi m t=(Vakhir-Vawal)/Atotal #hitung waktu print("Waktu untuk mencapai Vakhir: ",t, "detik") Cara 2 def TurunanKec(perc, vakir): #Fungsi return (percepatan - ((cd*vakir**(3/2))/m)) cd=eval(input("drag coefficient: ")) #input coef drag Vawal=0 #kondisi diam m=eval(input("mass (kg): ")) #massa percepatan=eval(input("acceleration (m/s^2): ")) #perc Vakhir=eval(input("top speed (m/s): ")) #vtop xawal = 0 #boundary condition x awal soal yinit = 0 #boundary condition y awal soal x = Vakhir #nilai x yang ditanya h = 1 #delta yang digunakan angka = (int)((x - xawal)/h) #menghitung jumlah increment yg diperlukan for i in range(1, angka + 1): k1 = h * TurunanKec(xawal, yinit) #rumus runge kutta k2 = h * TurunanKec(xawal + 0.5 * h, yinit + 0.5 * k1) k3 = h * TurunanKec(xawal + 0.5 * h, yinit + 0.5 * k2) k4 = h * TurunanKec(xawal + h, yinit + k3) yinit = yinit + (1 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4) #menjumlahkan nilai k1,k2,k3,k4 ke y' yang baru dan membaginya xawal = xawal + h #menambahkan xawal besarkan delta h print("waktu yang dibutuhkan", yinit,"sekon")
Tugas 30 Oktober
def TurunanKec(perc, vakir): #Fungsi return (9.8*sina-(1/2)*(1/m)*(cd)**(3/2)-miu*9.8) cd=eval(input("drag coefficient: ")) #input coef drag miu = eval(input("koef gesek: ")) Vawal=0 #kondisi diam sina = 0.5 m=eval(input("mass (kg): ")) #massa percepatan=eval(input("acceleration (m/s^2): ")) #perc Vakhir=eval(input("top speed (m/s): ")) #vtop xawal = 0 #boundary condition x awal soal yinit = 0 #boundary condition y awal soal x = Vakhir #nilai x yang ditanya h = 1 #delta yang digunakan angka = (int)((x - xawal)/h) #menghitung jumlah increment yg diperlukan for i in range(1, angka + 1): k1 = h * TurunanKec(xawal, yinit) #rumus runge kutta k2 = h * TurunanKec(xawal + 0.5 * h, yinit + 0.5 * k1) k3 = h * TurunanKec(xawal + 0.5 * h, yinit + 0.5 * k2) k4 = h * TurunanKec(xawal + h, yinit + k3) yinit = yinit + (1 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4) #menjumlahkan nilai k1,k2,k3,k4 ke y' yang baru dan membaginya xawal = xawal + h #menambahkan xawal besarkan delta h print("waktu yang dibutuhkan", yinit,"sekon")
Computational Fluid Dyinamics
Computational fluid dynamics (CFD) adalah alat simulasi yang digunakan untuk menganalisis fenomena termal dan fluida yang kompleks. Ini penting dalam menjaga keamanan banyak produk yang kita gunakan sehari-hari, seperti mobil atau bahkan rumah tempat kita tinggal. Memvisualisasikan pergerakan rumit dari aliran gas atau cairan bisa sangat berbelit-belit. Dengan mengimplementasikan Software Simulasi seperti, SC / Tetra ke dalam alur kerja, menganalisis gerakan-gerakan ini lebih mudah dari sebelumnya. Ini memungkinkan pengguna untuk memprediksi kinerja produk mereka sebelum pengujian fisik. Ini menghasilkan desain yang lebih optimal di awal siklus pengembangan produk.
Artificial Neural Network
ANN adalah adalah model komputasi yang terdiri dari beberapa elemen pemrosesan yang menerima input dan memberikan output berdasarkan fungsi aktivasi yang telah ditentukan.
Enable comment auto-refresher