Koding Optimasi
import numpy as np from scipy.optimize import minimize
def calc_drag(x):#drag
x1 = x[0] drag = 0.000000001*x1**6-0.0000003*x1**5+0.00003*x1**4-0.0008*x1**3-0.0002*x1**2+0.4312*x1+2.7716 return drag
def calc_lift(x): #lift
x1 = x[0] lift = -0.00000001*x1**5-0.000002*x1**4+0.0004*x1**3-0.0147*x1**2+0.0705*x1+5.313 return lift
def objective(x): #sudut yang diminimalkan
return calc_lift(x)
def constraint1(x): #variable SUDUT yang meminimalkan persamaan garis drag
return 90 - calc_drag(x)
def constraint2(x): #variable SUDUT yang meminimalkan persamaan garis lift
return 90 - calc_lift(x)
con1=({'type':'ineq','fun':constraint1}) con2=({'type':'ineq','fun':constraint2}) cons = (con1,con2)
x1_guess = 50
x0 = np.array([x1_guess])
sol = minimize(objective,x0, method='SLSQP',constraints=cons, options={'disp':True})
xopt = sol.x forceopt = -sol.fun
dragopt = calc_drag(xopt) # drag optimal liftopt = calc_lift(xopt) # lift optimal
print ('sudut optimal = '+str(xopt[0])) print ('total force optimal = '+str(-forceopt)) print ('drag force optimal = '+str(dragopt)) print ('lift force optimal = '+str(liftopt))