Difference between revisions of "Benarido Amri"

From ccitonlinewiki
Jump to: navigation, search
(Design Project)
(Design Project)
Line 28: Line 28:
  
 
===== Optimization Objective =====
 
===== Optimization Objective =====
*Design Variables = Thickness, weight, and volume.
+
*Design Variables = Thickness, weight, and deflection.
  
*Objective Function = To find the most suitable wall thickness when considering the trade off between weight and volume capacity of the storage tank.
+
*Objective Function = To find the most suitable wall thickness when considering the trade off between weight and strength (deflection) of the storage tank.
  
*Constraints = The storage tank must be able to fit within a space of 5.8375 cm x 5.8375 cm x 11.0234 cm rectangular box shape or around 1.5 L of volume.
+
*Constraints = The storage tank must be able to fit within a space of 5.8325 cm x 5.8325 cm x 11.0234 cm rectangular box shape or around 1.5 L of volume. And must be able to hold a minimum of 1 L of hydrogen.
 +
 
 +
For the storage tank project, I will attempt to optimize the wall thickness of the tank by considering the weight and deflection. Weight can be a crucial factor especially when the storage tank is for applications that needs to be mobile and light. However if we were to use the same material, reducing weight can have an effect on its strength, one aspect of strength compromised is its ability to resist deflection when given a force.
 +
 
 +
The optimization process is done by using a graph to find the intersection point between deflection and weight. Due to the many formulas and equations involved, we can simplify the calculation by using a code such as python or MATLAB. In my case, I will be using a python programming language.
 +
 
 +
===== Design =====
 +
Before we can calculate the weight and deflection, we need to define our material, shape, and also size. The shape of the tank can be divided into 2 basic geometry, the main cylinder and the cap on both sides.

Revision as of 18:48, 5 June 2023

Introduction

BenaridoAmri Photo.jpeg

  • Full Name : Benarido Amri
  • NPM : 2106718230
  • Major : Mechanical Engineering
  • Email : benarido.amri@ui.ac.id
  • Lecturer : Dr. Ahmad Indra Siswantara


Assalamualaikum Wr. Wb.

My name is Benarido Amri currently studying Mechanical Engineering at Universitas Indonesia. this page would be a way for me to update the progress of learning Numerical Method.

Design Project

Pressurized Hydrogen Storage

Hydrogen can be a great alternative for conventional electric vehicle energy source, since it can provide many benefits such as less charge time and cleaner environmental waste. However, the problem we face with hydrogen is the safety concerns regarding its storage method, even though hydrogen is generally safe under normal pressure, it can be a major safety issue when stored at such a high pressure -which is how the hydrogen will be stored in a EVs-, upon accident many worried that the hydrogen could explode, or catch fire.

In this class, our ultimate goal would be to find a way to safely contain pressurized hydrogen. Although we are going to focus on a much smaller case and less pressure. With the specifications being 1 liter of hydrogen pressurized to 8 bar.

Optimization Consideration

We were tasked of designing a pressurized hydrogen storage tank which can hold up to 1 liter of 8 bar hydrogen which costs less than Rp. 500 000. For the optimization, we wanted to optimize the cost without sacrificing the performance such as safety, and reliability.

Material Selection

The current material selection for the storage is generally made of metal such as austenitic stainless steel (AISI 316 and AISI 304). This is because hydrogen storage must have very high tensile strength, low density, and doesn't react with hydrogen.

Optimization Objective
  • Design Variables = Thickness, weight, and deflection.
  • Objective Function = To find the most suitable wall thickness when considering the trade off between weight and strength (deflection) of the storage tank.
  • Constraints = The storage tank must be able to fit within a space of 5.8325 cm x 5.8325 cm x 11.0234 cm rectangular box shape or around 1.5 L of volume. And must be able to hold a minimum of 1 L of hydrogen.

For the storage tank project, I will attempt to optimize the wall thickness of the tank by considering the weight and deflection. Weight can be a crucial factor especially when the storage tank is for applications that needs to be mobile and light. However if we were to use the same material, reducing weight can have an effect on its strength, one aspect of strength compromised is its ability to resist deflection when given a force.

The optimization process is done by using a graph to find the intersection point between deflection and weight. Due to the many formulas and equations involved, we can simplify the calculation by using a code such as python or MATLAB. In my case, I will be using a python programming language.

Design

Before we can calculate the weight and deflection, we need to define our material, shape, and also size. The shape of the tank can be divided into 2 basic geometry, the main cylinder and the cap on both sides.