Difference between revisions of "Tri Aji Setyawan"

From ccitonlinewiki
Jump to: navigation, search
(MINGGU KE 3)
(MINGGU KE 3)
Line 40: Line 40:
  
 
   
 
   
 +
 +
<syntaxhighlight lang="modelica">
 +
function NaiveGauss
 +
 +
/*
 +
// Pseudocode Figure 9.4
 +
 +
//Forward Elimination
 +
DOFOR k = 1, n - 1
 +
  DOFOR i = k + 1, n
 +
    factor = a[i,k] / a[k,k]
 +
    DOFOR j = k + 1 to n
 +
      a[i,j] = a[i,j] - factor * a[k,j]
 +
    END DO
 +
    b[i] = b[i] - factor * b[k]
 +
  END DO
 +
END DO
 +
 +
// Back Substitution
 +
x[n] = b[n] / a[n,n]
 +
DOFOR i = n - 1, 1, -1
 +
  sum = b[i]
 +
  DOFOR j = i + 1, n
 +
    sum = sum = a[i,j] * x[j]
 +
  END DO
 +
  x[i] = sum / a[i,i]
 +
END DO
 +
*/
 +
 
input Real [:,:] A; // Left-hand Coefficients of the Linear Equation System in array form
 
input Real [:,:] A; // Left-hand Coefficients of the Linear Equation System in array form
 
input Real [:] B;  // Right-hand Constants of the Linear Equation System in array form
 
input Real [:] B;  // Right-hand Constants of the Linear Equation System in array form

Revision as of 07:56, 2 December 2020

Biodata

Tri Aji Setyawan 1906301324

Saya merupakan mahasiswa teknik mesin UI angkatan 2019. saya menyukai teknik mesin karena tertarik pada bidang manufaktur dan karena teknik mesin sendiri memiliki prospek kerja yang luas. hal yang saya pelajari sebelum uts ini adalah mengenai turunan numerik, deret mclaurin , interpolasi, regresi, pengertian dari metode numerik, pseucode.

MINGGU KE 1

  • Tujuan mempelajari metode numerik
  • 1. matching dengan tujuan belajar: memahami konsep dan prinsip dasar di dalam metnum. contoh persamaan aljabar, algorithma, pencocokan kurva, persamaan diferensial parsial.
  • 2. dapat menerapkan pemahaman terhadap konsep di dalam permodelan numerik ( pengaplikasian metode numerik )
  • 3. mampu menerapkan metnum di dalam persoalan keteknikan.
  • 4. untuk mencapai poin 1,2,3, yaitu dengan cara moral value (adab). untuk menambah nilai tambah / adabsehingga kita menjadi orang yang lebih beradab

TUGAS 1

Pada pertemuan sebelumnya , saya mendapatkan tugas untuk membuat video terkait penggunaan aplikasi open modelica

https://youtu.be/not0ONx83Z0

MINGGU KE 2

Tugas 2

https://youtu.be/FCUZmC05Qlo


MINGGU KE 3

  • pseudocode figure 9.4
Pseudocode.jpg


function NaiveGauss

/*
// Pseudocode Figure 9.4

//Forward Elimination
DOFOR k = 1, n - 1
  DOFOR i = k + 1, n
    factor = a[i,k] / a[k,k]
    DOFOR j = k + 1 to n
      a[i,j] = a[i,j] - factor * a[k,j]
    END DO
    b[i] = b[i] - factor * b[k]
  END DO
END DO

// Back Substitution
x[n] = b[n] / a[n,n]
DOFOR i = n - 1, 1, -1
  sum = b[i]
  DOFOR j = i + 1, n
    sum = sum = a[i,j] * x[j]
  END DO
  x[i] = sum / a[i,i]
END DO
*/

input Real [:,:] A; // Left-hand Coefficients of the Linear Equation System in array form
input Real [:] B;   // Right-hand Constants of the Linear Equation System in array form
output Real [:,:] y;// Array containing coefficient matrix after NGE operation
output Real [:] x;  // Array containing solved values of x

protected
Real [:,:] a;
Real [:] b;
Integer m = size(A,1);  // Number of rows in matrix
Integer n = size(A,2);  // Number of columns in matrix
Real k = 1;       // Pivot column pointer
Real i = 1;       // Row counter
Real j = 1;       // Row element counter
Real factor = 1;  // Factor value used for forward elimination
Real sum = 1;     // Sum value used for back substitution

algorithm

// Transfer input matrix (A,B) into variables (a,b)
a := A;
b := B;

// Forward Elimination
for k in 1:(n-1) loop
  for i in (k+1):n loop
    factor := a[i,k] / a[k,k];
    for j in (k+1):n loop
      a[i,j] := a[i,j] - (factor * a[k,j]);
    end for;
    b[i] := b[i] - (factor * b[k]);
  end for;
end for;

// Back Substitution
x[n] := b[n] / a[n,n];
for i in (n-1):(-1) loop
  sum := b[i];
  for j in (i+1):n loop
    sum := sum - (a[i,j] * x[j]);
  end for;
  x[i] := sum / a[i,i];
end for;

end NaiveGauss;