Wildan Firdaus

From ccitonlinewiki
Revision as of 02:35, 22 April 2020 by Wildan Firdaus (talk | contribs)
Jump to: navigation, search

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُ

BIODATA DIRI

Nama : Wildan Firdaus

NPM  : 1906435574

Fakultas/ Jurusan : Teknik/ Teknik Mesin

Kelas Mekanika Fluida 02

Pertemuan Mekanika Fluida 1 : 31 Maret 2020

Pertemuan pertama pada hari ini dimulai dengan pemberian materi oleh Bang Muhammad Hilman Gumelar atau akrab disapa Bang Edo. Materi tersebut berisi tentang penjelasan aliran viskos di dalam pipa, pressure lost, hubungan dari jenis aliran viskos dengan pressure lost dan simulasi aliran didalam pipa menggunakan software CFDSOF.

Aliran viskos adalah aliran di mana kekentalan nya diperhitungkan. Jenis aliran viskos dalam pipa ditentukan dari bilangan Reynold nya. Bilangan reynold adalah rasio gaya inersia suatu fluida terhadap gaya viskos fluida tersebut.

  Re = (ρ * v * D)/μ
  dimana :
  v = Kecepatan aliran 
  D = Diameter pipa 
  ρ = Massa jenis 
  μ = Viskositas dinamik 

Nilai Re kurang dari 2100 maka aliran tersebut laminer dan jika Re nya lebih dari 4000 maka aliran tersebut turbulen.

Pada pertemuan ini bang Edo juga memberikan simulasi terkait penggunaan aplikasi CFD yang mana akan digunakan untuk mensimulasikan rangkaian aliran.Berikut hasil latihan dari penggunaan software CFDSOF

Gambar dan Grafik Hasil Analisa CFDSOF

Kemudian menjelang akhir pertemuan, bang Edo memberikan tugas kepada mahasiswa berupa beberapa pertanyaan yaitu

1. Apa yang dimaksud dengan entrance region ?

2. Apa yang dimaksud dengan aliran berkembang sempurna ?

3. Bagaimana cara menghitung pressure drop ?

4. Apa pengaruh viskositas terhadap aliran ?

Jawab :

1. Entrance region adalah daerah atau bagian pada pipa yang dilalui oleh aliran hingga mencapai kondisi kecepatan aliran fluida yang seragam

2. Aliran berkembang sempurna adalah kondisi ketika profil kecepatan aliran fluida sudah seragam

3. Pressure drop untuk aliran laminer

  ∆p = f * 1/2 * 1/D * ρ * V^2      dimana f = 64/Re

Presssure drop untuk aliran turbulen

  ∆p = λ * L/D * ρ/2 * w^-2

4. Pengaruh viskositas terhadap aliran ialah jika pada aliran di suatu pipa viskositas nya di pertimbangkan maka aliran yang ada didekat dengan dinding pipa terjadi suatu gaya gesek dan menghasilkan suatu head loss



Pertemuan Mekanika Fluida 2 : 1 April 2020

Pertemuan kedua dimulai dengan pemberian materi mengenai 3 hukum dasar yang digunakan pada mekanika fluida oleh Pak DAI. Ketiga hukum tersebut yaitu :

  1. Konservasi massa
     dM/dt = 0
  2. Konservasi energi
     dE/dt = W + Q
  3. Konservasi momentum 
     m * (dV/dt) = ∑F


Kemudian setelah itu Pak DAI membahas tentang entrance region, entrance length, fully developed flow, pressure drop ( dalam hal ini tekanan dinamik ). Berikut adalah skema nya

Skema EL.jpg

Setelah Pak DAI memberikan materi kami diberikan persoalan untuk dikerjakan menggunakan software CFDSOF dengan arahan dari Bang Edo

Soal.jpeg

Dari data data yang diberikan di soal yaitu ukuran channel flow dan fluid properties yang diberikan, umum nya akan menghasilkan vektor kecepatan sebagai berikut :

Vektor Kecepatan Pada Input Channel Flow
Vektor Kecepatan Pada Center Channel Flow
Vektor Kecepatan Pada Output Channel Flow

Setelah itu, yang harus dilakukan adalah menghitung bilangan reynold dan entrance length yang nantinya akan di input kedalam CFDSOF melalui fitur slice. Hal ini dilakukan untuk melakukan pembuktian benar atau tidak nya lokasi entrance length jika di analisa menggunakan software. Benar tidak nya entrance length nantinya akan diketahui lewat data kecepatan di beberapa titik.

Hasil perhitungan nya adalah sebagai berikut :

Hasil Perhitungan.jpg

Pada soal a bagian 1 berdasarkan data-data yang ada dengan inlet velocity adalah 0,01 m/s dengan viskositas dinamik 0,00004 kg/m.s diperoleh Reynold numbers sebesar 30 dan entrance length adalah 0,18 m. Kemudian diambil sampel beberapa titik searah sumbu x yang digunakan untuk mengetahui perubahan kecepatan yang diperoleh adalah 0,01 m, 0,18 m(entrance length), 0,5 m dan 0,9 m. Perubahan kecepatan nya dapat dilihat sebagai berikut :

Perubahan a1.png

Pada soal a bagian 2 berdasarkan data-data yang ada dengan inlet velocity adalah 0,01 m/s dengan viskositas dinamik 0,00001 kg/m.s diperoleh Reynold numbers sebesar 120 dan entrance length adalah 0,72 m. Kemudian diambil sampel beberapa titik searah sumbu x yang digunakan untuk mengetahui perubahan kecepatan yang diperoleh adalah 0,01 m, 0,72 m(entrance length), 0,8 m dan 0,99 m. Perubahan kecepatan nya dapat dilihat sebagai berikut :

Perubahan a2.png

Pada soal b bagian 1 berdasarkan data-data yang ada dengan inlet velocity adalah 0,01 m/s dengan viskositas dinamik 0,00004 kg/m.s diperoleh Reynold numbers sebesar 30 dan entrance length adalah 0,18 m. Kemudian diambil sampel beberapa titik searah sumbu x yang digunakan untuk mengetahui perubahan kecepatan yang diperoleh adalah 0,01 m, 0,18 m(entrance length), 0,5 m dan 0,9 m. Perubahan kecepatan nya dapat dilihat sebagai berikut :

Perubahan b1.png

Pada soal b bagian 2 berdasarkan data-data yang ada dengan inlet velocity adalah 0,04 m/s dengan viskositas dinamik 0,00004 kg/m.s diperoleh Reynold numbers sebesar 120 dan entrance length adalah 0,72 m. Kemudian diambil sampel beberapa titik searah sumbu x yang digunakan untuk mengetahui perubahan kecepatan yang diperoleh adalah 0,01 m, 0,72 m(entrance length), dan 0,9 m. Perubahan kecepatan nya dapat dilihat sebagai berikut :

Perubahan b2.png


Dari hasil analisa menggunakan software dapat diketahui kecepatan dititik setelah entrance length kecepatan nya tidak berubah. Hal ini menandakan aliran tersebut sudah berada dalam kondisi berkembang sempurna.


Pertemuan Mekanika Fluida 3 : 7 April 2020

Pada pertemuan ini pak DAI memberikan penjelasan dengan bilangan reynold dan membahas tentang pekerjaan rumah mengenai aliran turbulen. Bilangan reynold adalah bilangan yang menunjukan perbandingan antara gaya inersia dengan gaya viskos. Semakin tinggi nilai bilangan reynold maka semakin tinggi gaya inersianya. Hal ini disebabkan karena suatu fluida tersebut mempunyai nilai kecepatan yang lebih tinggi.

Setelah itu juga menjelaskan mengenai lapisan batas. Lapisan batas adalah daerah lapisan tipis yang lokasinya terdapat di sekitar permukaan dimana aliran diperlambat oleh pengaruh gesekan antara permukaan dengan aliran fluida. Ketika lapisan bagian atas dan bagian bawah mulai berkembang dan bertemu pada suatu titik. Maka kondisi tersebut disebut telah memasuki daerah entrance region dan nantinya kecepatan fluida tersebut akan konstan.

Terakhir pak DAI memberikan penjelasan tentang pengaruh viskositas suatu fluida terhadap pembentukan posisi entrance length dan entrance region. Dimana jika viskositas suatu fluida semakin besar maka entrance length nya akan semakin pendek. Hal ini dikarenakan jika nilai viskositas suatu fluida semakin besar maka nilai bilangan reynold nya akan semakin kecil. Oleh karena bilangan reynoldnya kecil, sehingga akan berakibat kepada panjang entrance length dan begitupun berlaku sebaliknya.

Setelah materi disampaikan, bang Edo memberikan simulasi terkait PR yang akan dikerjakan dengan software solidworks, CFDSOF dan paraview.


Pertemuan Mekanika Fluida 4 : 8 April 2020

Pada pertemuan kali ini Pak DAI membahas tentang aliran aliran yang ada di dalam pipa yaitu terdapat aliran laminar, transisi dan turbulen. Tetapi pada kali lebih memfokuskan pembahasan nya terhadap aliran turbulen. Aliran turbulen adalah aliran yang partikel partikel nya bergerak secara acak, saling berpotongan dengan kecepatan yang tidak stabil di setiap titik nya. Cara untuk menghitung kecepatan aliran turbulen tidak bisa disamakan dengan cara menghitung kecepatan aliran laminar. Jika aliran laminar kita hanya perlu menghitung kecepatan rata rata u ̅ nya saja dan dianggap semua titik memiliki kecepatan yang sama dengan kecepatan rata rata. Sedangkan untuk aliran turbulen kita harus mencari kecepatan rata rata u ̅ dan kecepatan fluktuasi di titik tertentu u’.

Kecepatan Turbulen.jpg

Sehingga ketika ingin menentukan kecepatan di titik A persamaan nya menjadi

  u total A = u ̅ A + u’A

Nilai kecepatan pada aliran turbulen jauh lebih besar jika dibandingkan dengan dengan kecepatan aliran laminar. Hal ini dikarenakan gaya inersia nya besa, bisa dilihat dari bilangan Reynold nya yang lebih besar dari 4200 (Re= gaya inersia / gaya friksi). Besarnya kecepatan pada aliran turbulen menyebabkan energi kinetiknya juga semakin besar yang nantinya akan menyebabkan sublapisan viskos semakin tebal.