Valve-Laksita Aji Safitri

From ccitonlinewiki
Revision as of 20:21, 27 November 2020 by Laksita Aji Safitri (talk | contribs)
Jump to: navigation, search
LAKSITA AJI SAFITRI.S1 Teknik Mesin-Ekstensi 2019.Universitas Indonesia

ASSALAMU'ALAIKUM WR.WB

BIODATA DIRI

Nama  : LAKSITA AJI SAFITRI

NPM  : 1906435523

Agama  : Islam

Pendidikan Terakhir: Diploma III

Program studi  : S1-Teknik Mesin

Pertemuan 1 Sistem Fluida (Kamis,12 November 2020)

PRESSURE DROP PADA VALVE

1.1 Valve

Katup/Valve merupakan suatu alat yang berfungsi untuk membuka/menutup aliran,menghinndari blackflow, mengontrol laju aliran, arah aliran dan tekanan dari suatu materialproduksi. Dalam DIN 24300,Mengikuti rekomendasi CETOP (Comite Europeen des Transmissions Oleohydrauliques et Pneumatiques) dan ISO/R 1219-1970 Katup dibagi menjadi 4 kelompok menurut fungsinya, yaitu:

1. Katup Pengrah (Directional Valve/Way Valve)

2. Katup non balik (non-return Valve)

3. Katup kontrol (Control Valve)

4. Katup penutup (Shutt-off Valve)

Katup kontrol adalah alat yang digunakan untuk memodifikasi airan fluida atau laju tekanan pada sebuah sistem proses dengan menggunakan daya untuk operasinya.katup ini digunkan oleh industri dalam banyak aplikasi/ suatu proses.pada suatu loop proses, hanya variabel tekanan yang dikontrol, sedangkan variabel tersebut akan berubah-ubah karena perubahan aliran pada sistem atau karena lapisan pipa dan permukaan dinding peralatan. Variasi variabel ini tidak diinginkan dan harus dikompensasi dengan menggunakan katup kontrol.Proses pengontrolan variable tekanan tersebut oleh katup kontrol akan menimbulkan pressure drop. Pressure drop merupakan penurunan tekanan yang terjadi pada suatu aliran fluida.

sesuai dengan proses bukaan dan penutupan katup kontrol,jenis katup kontrol yang ada dalam sistem instrumentasi adalah

1. Sliding stem =dikenal karena gerakan (buka-tutup) steam secara linier. Contoh: Control Valve jenis globe

2. Rotary = dikenal karena gerakan (buka-tutup)steam memuntir 90 derajat.Contoh: Control valve jenis ball dan butterfly

dibantu dengan menggunakan aplikasi CFD-SOF akan tampak secara visual keadaan aliran yang terjadi pada salah satu valve, yang mana pada aplikasi ini kita dapat menghitung pula pressure drop dari bagian Valve Inlet hingga Outet. dengan menghitung Pstatik,Pdinamik,Magnitude U,Ptotal pada bagian inlet dan outlet dan mencari selisihnya, maka kita akan menemukan Pressure drop pada aliran yang melewati bagian input - output.

1.2 CFD-SOF

Untuk tatacara pengaplikasiannya akan dijelaskan pada penjelasan dibawah ini:


1. Buka Apps CFD-SOF ,kemudian import geometri yang dipilih klik Autosize dimension untuk melihat boundary geometrinya dan tentukan boundary name pada box mesh

   dimension, 
  
  X- = Inlet, X+ = Outlet, Y+ = Wall 


Sisflu1.jpg


2. Tentukan mesh location pada Generate mesh dengan x=0,03 ; y= 0,02 ; z= 0,03 klik generate mesh dan check mesh


Sisflu2.jpg


3. klik simulation model dengan mengganti Turbulance (RANS) dan pada turbulance model pilih STTK-w dan atur boundary properties di boundary condition

  inlet = Velocity Inlet dengan kecepatan 1 m/s ; outlet = outflow ; wall = wall


Sisflu3.jpg


4. lakukan run solver pada number literation 3000 dan run time 3000


Sisflu5.jpg


5.Menghasilkan Residual Monitor


Sisflu19.jpg


6. klik paraview dan apply file yang digunakan sebelumnya


Sisflu7.jpg


7. hitung Pstatik,Pdinamik,Magnitude U,Ptotal pada inlet dan outlet flow, yaitu menggunakan rumus:

  - Pstatik = P * 1,225
  - MagU= sqrt(U_x^2+U_y^2+U_z^2)
  - Pdinamik = 0,5*1,225*MagU^2
  - Ptot = Pstatic+Pdinamik


Sisflu8.jpg


Sisflu9.jpg


Sisflu10.jpg


Sisflu11.jpg


8.klik Ptot dan lakukan ekstrak blok inlet dan outlet dengan cara klik Filters-Alphabetical-Ekstrak Blok


Sisflu12.jpg


9.Lakukan integrasi variabel inlet dengan klik Filters-Alphabetical-integrasi variabel untuk melihat nilai dari Pstatik,Pdinamik,Magnitude U,Ptotal yang terhitung


Sisflu13.jpg


Sisflu14.jpg


10.Lakukan integrasi variabel Outlet dengan klik Filters-Alphabetical-integrasi variabel untuk melihat nilai dari Pstatik,Pdinamik,Magnitude U,Ptotal yang terhitung


Sisflu15.jpg


Sisflu16.jpg


Dari nilai tersebut ditentukan diperoleh nilai Ptotal inlet dan Ptotal Outlet, sehingga Pressure drop yang dihasilkan oleh aliran pada valve adalah

delta P = Ptot Inlet - Ptot Outlet

delta P = 0,000807999 - 0,0001551816

delta P = 0,000652813


Grafik Pressure drop


Sisflu17.jpg


Grafik MagU

Sisflu18.jpg


Note:

link pembelajaran

https://www.youtube.com/watch?v=RANhtK5u5W0 dengan file https://drive.google.com/file/d/1Av131b__mmSZEavW_WjNPOj0pUiF44kt/view

https://www.youtube.com/watch?v=qpumUG0veRs

https://www.youtube.com/watch?v=54OqQL1BIY0


Pertemuan 2 Sistem Fluida (Kamis,19 November 2020)

Sistem fluida merupakan sistem yang terdiri dari beberapa komponen yang bekerjasama untuk mengerjakan satu tujuan tertentu misalnya untuk mengalirkan fluida maupun memindahkan fluida dari suatu tempat ketempat lainnya atau dapat dikatakan bahwa sistem fluida merupakan sistem yang berhubungan dengan fluida yaitu dengan menghasilkan kecepatan fluida maupun dr fluida menghasilkan energi. Dalam mempelajari penerapan dari sistem fluida, kita dapat mempelajarinya melalui beberapa cara, yaitu:

- Eksperimen : dimana nilai yang hasilkan berasal dari beberapa percobaan sehingga menghasilkan nilai yang real

- Teori (Eksak) : dimana persoalan diselesaikan secara eksak /perhitungan dengan berbagai rumus

- CFD-SOF : dengan mensimulasikan beberapa fenomena yang terjadi pada sistem tersebut, dimana cara ini dpat digunakan jika cara eksak tidak dimungkinkan, lebih murah dijaankan dari pada eksperimen namun tidak nyata (hanya bergambar simulasi)

dengan ketiga cara tersebut kita dapat lebih memahami dan mengerti tentang fluida. yang mana ada beberapa kekurangan pada 1 metode dan bisa dibantu dengan metode yang lain, salah satunya dengan menggunakan CFD-sof maupun openmodelica, yang mana dalam aplikasi ini tidak hanya mempelajari tentang fluida saja.

Tugas mempelajari sistem fluida di OpenModelica

1. sistem fluida menggunakan 2 tank dan 1 pipe

pada sistem ini fluida mengalir melalui tank1 ke tank 2 dengan menggunakan pipe, dimana rangkaiannya seperti pada gambar dibawah ini:


Sis2.3.jpg

dari sistem yang ada di gambar diatas, kita dapat membuat koding seperti gambar dibawah ini:

Sis2.4.jpg


2. sistem fluida menggunakan 2 tank dan 2 pipe

pada sistem ini fluida mengalir dari Tank 1 ke Tank 2 melalui 2 pipe yang berbeda arahnya

Sis2.1.jpg

dari sistem yang ada di gambar diatas, kita dapat membuat koding seperti gambar dibawah ini:

Sis2.2.jpg


https://drive.google.com/drive/u/0/folders/1pXJGEt3Vlq6JkW7RxVKgBeVe-WmAImmv


Pertemuan 3 Sistem Fluida (Kamis,26 November 2020)

Model sistem fluida merupakan sebuah sistem yang disederhanakan untuk mempresentasikan kodisi aktualnya, dalam hal ini dipergunakan untuk mempermudah sistem yang kompleks dan belum tentu linier menjadilebih sederhana pada permaalahan sistem fluida. Pemodelan yang akan kita lakukan merupakan bentuk usaha untuk mempelajari sebuah sistem aktual melalui sebuah sistem yang di simplifikasi / sistem yang disederhanakan untuk mempresentasikan/membuat replika dari aktualnya,model sistem fluida ini dibuat karena sulitnya mempelajari aktual dari fenomena yang akan terjadi misal dengan object skala yang besar dan pemodelan ini tidak memerlukan biaya yang besar.Pemodelan ini dibagi menajdi beberapa hal, seperti:

- Model Fisik : permodelan yang digunakan dalam skala kecil

- Model Komputasi : permodelan ini dapat digunakan untuk system yang kompleks dengan diimbangi dengan ilmu dasar untuk menunjang pemahaman pada model yang dikomputasikan.sehingga kita dapat mengukur jug letak erroe yang di hasilkan dari model komputasi yang dijalankan.

dalam permodelan ini kita menggunakan pendekatan hukum fisika dasar atau law driven model seperti bernouly,continuitas dll. ada juga yang menggunakan artificial intelligent dengan menggunakna data-data yang dikumpulkan dari hasil eksperimen untuk menentukan nilai yang riil/aktual.

dalam pertemuan kali ini, kami membahsa tentang beberapa example yang ada di open modelica, diantaranya two tank, emty tank dan simple cooling. Pembelajaran ini seperti pada gambar dibawah ini:

1. Two tank : dalam simulasi ini terdapat 2 tank yang sejajar dengan ukuran yang sama namun volume yang berbeda.diantara kedua tank tersebut dihubungan dengan pipe horisontal. pada percobaan berikut kita akan mengetahui apakah ketinggian air pada kedua tank dalam waktu 1,5 detik akan setara? , maka disini kami menyimulasikan kerja dari two tank tersebut.


Permodelan two tank

Sistank1.jpg


Koding yang digunakan

Sistank2.jpg


hasil simulasi

Sistank3.jpg


2. Emty tank : dalam simulasi ini terdapat 2 tank yang yang dhubungkan dengan pipe vertikal dengan ketinggian antar tank berbeda sejauh 1m. pada simulais ini kami menghitung lama watu yang dibutuhkan untuk membuat air dalam tank1 habis atau tank2 terisi penuh


Permodelan emty tank

Sistank4.jpg


Koding yang digunakan

Sistank5.jpg


hasil simulasi

Sistank6.jpg


3. Simple Cooling: dalam simulasi ini terdapat sistem cooling sederhana dengan proses konveksi , dengan rangkaian seperti gambar berikut:


Permodelan emty tank

Sistank7.jpg


Koding yang digunakan

Sistank8.jpg