Difference between revisions of "Valve-Dendy Dwi Rohma Prahara Jaya"

From ccitonlinewiki
Jump to: navigation, search
(Pertemuan Kelima)
(Pertemuan Keenam)
Line 420: Line 420:
 
'''Hari, Tanggal : Kamis, 17 Desember 2020'''
 
'''Hari, Tanggal : Kamis, 17 Desember 2020'''
  
[[File:combinecyclepowerplant.jpg]]
+
Pada hari ini merupakan kuliah tamu yang di isi oleh CEO PT.Indopower International beliau bernama Dr.Ir Harun Al Rosyid.Berikut ialah presentasi yang di sampaikan oleh Bapak Dr.Ir Harun Al rosyid,MM,MT. Turbin berkembang pada tahun 1900 pada tahun 1950 sudah ada 224 turbin gas yang mulai beroperasi dengan kapasitas sebesar 27000 Kw. Pada saat ini kapasitas gas turbin single sebesar 300000 Kw. Pengaplikasian gas turbin biasanya di gunakan di pembangkit listrik. Gas turbin dari beberapa konfigurasi yaitu: -Turbo jet -Turbo Prop -Turbo Shaft -High-bypass -Low bypass Gas turbine di bagi dua tipe : -Heavy duty -Aeroderivate (efisiensi cukup tinggi karena partnya ringan dan compact)
  
[[File:1_gasturbine.jpg]]
+
Dasar untuk memilih turbin untuk power plant bukan hanya melihat efisiensi tetapi juga melihat parameter heat rate Combined cycle ialah gabungan antara gas turbin dan turbin uap,untuk memasang combine cycle turbin kita harus melihat performa turbin yang dipasang dinegara asalnya apakah efektif atau tidak dalam arti lain melihat operating cycle dari combine cycle.Tujuan dari combine cycle ialah untuk memanfaatkan panas yang dihasilkan dari gas turbine agar enegri keluaran dari gas turbin dapat digunakan oleh steam turbin. Sebagai engineer kita harus mengecek datasheet dari turbin yang ada dipasaran apakah spesifikasi tersebut valid atau tidak. Pada combine cycle terkadang di passang supplementary firing yang berguna untuk menaikan suhu yang ada di boiler.
  
[[File:2_gasturbinecycle.jpg]]
 
  
[[File:3_combinecycle.jpg]]
+
[[File:combinecyclepowerplant.jpg|500px|center]]
 +
 
 +
[[File:1_gasturbine.jpg|500px|center]]
 +
 
 +
[[File:2_gasturbinecycle.jpg|500px|center]]
 +
 
 +
[[File:3_combinecycle.jpg|500px|center]]
  
 
= '''Tugas Besar''' =
 
= '''Tugas Besar''' =

Revision as of 12:58, 7 January 2021

Assalamualaikum Warahmatullahi Wabarakatuh

DendyJayaHP.jpg

Perkenalkan,

          Nama : Dendy Dwi Rohma P J
          NPM  : 1906435473
          Ekstensi Teknik Mesin S1

Progres Belajar dan Tugas Kuliah Sistem Fluida 03


Pertemuan Pasca UTS

Pertemuan Pertama


Hari, Tanggal : Kamis, 12 November 2020 Oleh : Dr. Ahmad Indra

Pada pertemuan ini pak Dai memberikan pemaparan terkait dengan valve beserta simulasi valve pada CFDSOF. Valve merupakan komponen pendukung pada sistem perpipaan. Adapun fungsi dari valve adalah mengatur laju aliran dalam sebuah pipa, menutup atau membuka aliran, mencegah aliran balik (one way valve), dan mengatur tekanan. Berbagai jenis valve diantaranya adalah :

1. Gate Valve

2. Globe Valve

3. Ball Valve

4. Butterfly Valve

5. Check Valve

ContohValve.png

Setiap jenis valve mempunyai fungsi khusus. Globe valve pada gambar a, dilakukan untuk melakukan pengaturan debit. Gate valve pada gambar b, digunakan untuk menutup membuka suatu aliran (fully open atau fully close). Untuk mencegah terjadinya back flow, pemasangan check valve, seperti pada gambar c, adalah yang paling tepat.

PR 1-Simulasi Valve

Kemudian pada pertemuan ini diberikan tugas terkait dengan analisa aliran fluida di dalam valve dengan menggunakan bantuan software CFDSOF dan vissualkan melalui software Paraview. Berikut adalah desain gate valve yang saya pilih untuk simulasi alirannya.

InOut1.png
Tabel pTotal.png
Slice pTotal.png
Kurva pTotal.png
Slice magU.png
Kurva magU.png

Pertemuan Kedua


Hari, Tanggal : Kamis, 19 November 2020 Oleh : Dr. Ahmad Indra

Sistem fluida adalah suatu system yang terdiri dari beberapa komponen yang bertujuan untuk mengalirkan fluida dari suatu tempat ke tempat lain. Pada system fluida kita dapat menemukan berbagai macam hal seperti karakteristik fluida, jenis pompa, spesifikasi pompa (mesin kerja), dan jenis turbin (mesin tenaga). Misalnya untuk mengalirkan fluida ke tempat memerlukan tekanan yang cukup besar jadi kita bisa menghitung bagaimana komposisi pemilihan pompa dan spesifikasi berdasarkan kebutuhannya maka fluida tidak dapat dialirkan dengan efektif.

Dengan CFD kita bisa mensimulasikan secara dinamik atau bisa melihat aliran fluida secara real time. Sedangkan secara teori kita biasanya mensimulasikan saat kondisi steady state. Perlukah menggunakan CFD, perlu karena CFD dapat digunakan pada simulasi dengan kondisi transien/ dinamis. Kemudian lebih fleksible dari pada eksprerimen karena dapat dengan mudah mengganti parameter (fluida, pompa dan turbin) atau dengan mengganti dimensi benda kerja. Namun kita harus memiliki dasaran yang kuat mengenai teori yang digunakan pada sistem fluida dan mekanika fluida untuk memvalidasi hasil perhitungan numerik CFD.


Ada 3 metode dalammenganalisa fluida.

    1. Experiment. Melakukan metode secara langsung. Metode ini memerlukan banyak waktu dan biaya.
    2. Teori. Digunakan untuk memverifikasi data yang diambil.Contoh data experiment.
    3. Numerik gabungan antara experiment dan teoritis.

Semua metode ini saling melengkapi jadi tidak ada superior dalam penggunaan metode ini. Seperti kita tahu P = T* w kadang kita tidak tahu bagaimana torsi dan power yang dihasilkan secara transient. Oleh ebab itu CFD mempermudahkan untukmengetahui parameter tersebut.

PR 2_Empty Tank

Tugas 2 ini menganai simulasi pengosongan tangki dengan fluida air. Tersedia 2 tangki A dan B diletakkan dengan beda ketinggian 10m (panjang pipa). Dimensi tangki A dan B sama yaitu ketinggian tangki 1.1m dengan diameter 1m. Tangki A memiliki output dengan diameter 0.1m dan sama untuk output pada tangki B. Kemudian kondisi tangki A diisi air sampai ketinggian 1m, lalu kemudian dilakukan simulasi open valve pada tangki A sehingga air mengalir dari A ke B. Lalu berdasarkan simulasi akan didapatkan beberapa hasil yang kemudian dapat dialakukan ploting untuk dicari pengaruhnya terhadap waktu.

FluidTank1.png
Coding1.png
CekListTank1.png
CekListTank2.png
PlotingHeightTank1.png

Dari ploting (H) air pada tangki dengan (t) waktu didapatkan air pada tangki A habis pada detik ke 11.5.

Link file simulasi : https://drive.google.com/file/d/1WhkEHdAcQTaOaxM1pXzbE7g4Vlr4t5KC/view?usp=sharing

Pertemuan Ketiga


Hari, Tanggal : Kamis, 25 November 2020 Oleh : Dr. Ahmad Indra

Pada pertemuan ketiga ini pak dai dan pak hariyotejo menjelaskan mengenai manfaat dan penggunaan open modelica pada suatu sistem fluida. Kemudian diakhir pertemuan pak hariyotejo memberika tugas mengenai heating system dan three tanks dengan menggunakan open modelica.

Dari kedua sistem tersebut hal-hal atau poin yang harus dijawab mahasiswa adalah sebagai berikut:

1. Deskripsi/uraian fisik berdasarkan bagan yang ada

2. Prosedur analisa pemodelan

3. Analisa dan Interpretasi Hasil Pemodelan

4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan

5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh

PR Heating System

1 HeatingSystem Dendy.png

1. Deskripsi / uraian fisik berdasarkan bagan yang ada

Sistem diatas adalah sistem pemanasan fluida yang dihitung keluaran yang diinginkan dengan memantaunya menggunakan sensor. Fluida di dalam tangki dihisap dengan pompa dan didorong ke sebuah heater pemanas, pada heater ini temperature fluida akan mengalami kenaikan karena ada perpindahan panas dari heater ke fluida (konduksi dan force konveksi). Adanya penambahan tekanan pada aliran fluida ini juga meningkatkan laju perpindahan panas dari pipa ke fluida air, dibandingkan dengan aliran aliran fluida tanpa penambahan mesin kerja. Kemudian aliran fluida melewati alat ukur temperature untuk diukur berapa nilai temperatur fluida yang keluar. Lalu aliran fluida panas ini dialirkan dengan pipa sepanjang x. Tentunnya pada kondisi yang sebenrnya apabila pipa tidak diberi insulasi, maka akan ada kalor dari aliran fluida yang hilang ke lingkungan karena konduksi, konveksi dan radiasi pada dinding pipa luar ke lingkungan. Kemudian kondisi fluida yang masih panas ini mengalir melewati valve, valve digunakan untuk mengatur seberapa besar debit fluida yang akan masuk ke radiator. Radiator adalah alat untuk menurunkan temperature fluida dengan menggunakan perpindahan panas konduksi (aliran fluida >> dinding plat radiator) lalu force konveksi (dari dinding plat radiator luar >> udara lingkungan). Setelah itu temperature fluida diukur kembali sebelum memasuki tangki awal. Parameter-parameter yang digunakan pada Heating System ini adalah sebagai berikut :

Tangki

• Ketinggian Tangki = 2 m

• Cross Area = 0.01 m^2

• Level Start = 1 m


Pompa

• Tekanan Input = 110000 Pa

• Tekanan Output = 130000 Pa

• Rotational Speed = 1500 Rev/min


Heater

• Panjang pipa = 2 m

• Diameter pipa = 0.01 m

• Tekanan awal = 130000 Pa


Burner

• Kalor = 1600 Watt

• Temperatur Reference = 70

• Alpha = -0.5 1/K


Pipa

• Panjang pipa = length = 10 m

• Tekanan awal = 130000 Pa

• Diameter pipa = 0.1 m


Valve

• Pressure drop = 10000 Pa

• Mass flow rate = 0.01 kg/s


Radiator

• Panjang pipa = 10 m

• Diameter pipa = 0.01 m

• Tekanan awal = 110000 Pa

• Temperatur awal = 50 C


Wall

• Thermal Conductance = 80 W/K


2. Prosedur analisa pemodelan

Dalam melakukan permodelan analisa heating system di openmodelika, kita dapat lakukan dengan langkah-langkah berikut:

• Membuka aplikasi openmodelica

• Membuka library openmodelica dengan memilih example, file heating system yang dapat ditemukan memalui cara berikut: (Modelica -> Fluid -> Example -> Tanks -> Heating System)

• Lakukan pengecekan susunan gambar, parameter setiap part (klik kiri 2x), atau dengan penambahan pada coding. Kemudian lakukan pengecekan model/ coding dengan meng klik tanda centang 1 hijau.

• Jika semua variable sudah sesuai, maka lakukan simulasi dengan meng klik symbol (->) berwarna hijau dan tunggu beberapa saat (proses compile selesai) untuk mengatahui hasil simulasinya.

• Untuk melihat hasil simulasi yang kita inginkan kita dapat mencentang parameter hasil yang ingin kita presentasikan dalam bentuk grafik terhadap variable waktu.

• Kemudian jika ingin mensimulasikan pada interval waktu tertentu maka (transien), kita bisa klik symbol S yang ada pada bagian model dengan mengubah stop time dan start time sesuai dengan interval waktu yang kita butuhkan.

• Apabila hasil simulasi dirasa belum sesuai dengan keinginan kita (fungsi validasi) disini kita juga bisa mengganti parameter sesuai dengan yang kita inginkan seperti dimensi tangki, diameter pipa, fluid flow dan pressure tetapi tidak bisa dilakukan ketika didalam example. Pada heating system ini ada beberapa part yang dapat diganti parameter didalamnya sesuai dengan keinginan kita, seperti pada tangki, pump, heater, pipe, valve dan radiator.

3. Analisa dan Interpretasi Hasil Pemodelan

Sistem heating fluida ini menurut saya merupakan sistem yang cukup kompleks, karena ada teori tentang aliran fluida, perpindahan panas (konduksi, foced konveksi, radiasi jika diikutkan) dan sistem control feedback. Karena ada 3 keilmuan tersebut diatas maka heating system ini saya kategorikan sebagai sistem yang kompleks.

Menurut saya hal yang dapat diambil dengan kita melakukan simulasi adalah perhitungan keluaran temperatur (T) fluida dari heater, inlet valve, outlet valve dan outlet radiator. Menurut saya keempat titik diatas yang saya sebutkan sangat penting dalam analisis pada kasus heating system ini, karena pada titik tersebut parameter laju aliran, tekanan, temperatur, ada atau tidaknya insulasi menentukan keluaran hasil temperatur fluida.

4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan

Pada simulasi heating system ini seperti yang saya sebutkan diatas merupakan simulasi yang membutuhkan multi disiplin keilmuan (mekanika fluida, perpindahan panas, dan sistem control) untuk dapat memvalidasi hasil simulasi numerik atau melakukan perhitungan secara manual.

2 SimulationError Dendy.png

5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh

PR 3 Tanks

1. Deskripsi/uraian fisik berdasarkan bagan yang ada

Jadi pada simulasi 3 tanks ini akan dilakukan simulasi dengan membuka valve secara bersamaan. Sebelumnya 3 tangki ini telah dihubungkan dengan pipa satu sama lain. Kemudian 3 tanks ini telah diisi air dengan ketinggian dari dasar tangki seperti pada gambar. Dari pembukaan valve tersebut diharapkan mampu dipelajari fenomena yang terjadi, hukum fisika yang berlaku dan dapat ditarik kesimpulan berupa kurva ploting.

Berikut beberapa parameter yang diketahui : • Medium yang digunakan berupa Air. • Tangki, model Tangki mempunyai HeatPort dan 3 buah Ports. Dimana Ports dapat digunakan sebagai inlet dan outlet pada tangki.

Tangki/ tank

Tangki 1 •Ketinggian Tangki = height = 12

•Luas = crossArea = 1

•Tinggi awal air = level_start = 8

•Diameter ports = diameter = 0.1

Tangki 2 •Ketinggian Tangki = height = 12

•Luas = crossArea = 1

•Tinggi awal air = level_start = 3

•Diameter ports = diameter = 0.1

Tagki 3 •Ketinggian Tangki = height = 12

•Luas = crossArea = 1

•Tinggi awal air = level_start = 3

•Diameter ports = diameter = 0.1

Pipa

Pipa adalah alat bantu transfer fluida, baik karena adanya beda ketinggian atau penggunaan pompa. Pipa digunakan untuk mengalirkan fluida dari tempat A ke B dengan pipa yang membentang dari A ke B. Pada simulasi ini nilai Roughness diabaikan elbow (minor losses) juga tidak diperhitungkan. Parameter yang digunakan pipa untuk simulasi dapat dilihat seperti dibawah ini. Pipa 1 • Panjang pipa = length = 2

• ketinggian port_b – ketinggian port_a = height_ab = 2

• Diameter pipa = diameter = 0.1

Pipa 2 • Panjang pipa = length = 2

• ketinggian port_b – ketinggian port_a = height_ab = 2

• Diameter pipa = diameter = 0.1

Pipa 3 • Panjang pipaa = length 2

• ketinggian port_b – ketinggian port_a = height_ab = -1

• Diameter pipa = diameter = 0.1

Fluid3Tank.png

2. Prosedur analisa pemodelan

Dalam melakukan permodelan analisa three-tank di openmodelika, kita dapat dilakukan dengan langkah-langkah berikut:

• Membuka aplikasi openmodelica

• Membuka library openmodelica dengan memilih file three tank yang dapat ditemukan memalui cara berikut: (Modelica -> Fluid -> Example -> Tanks -> Three Tanks)

• Lakukan pengecekan susunan gambar, parameter setiap part (klik kiri 2x), atau dengan penambahan pada coding. Kemudian lakukan pengecekan model/ coding dengan meng klik tanda centang 1 hijau.

• Jika semua variable sudah sesuai, maka lakukan simulasi dengan meng klik symbol (->) berwarna hijau dan tunggu beberapa saat (proses compile selesai) untuk mengatahui hasil simulasinya.

• Untuk melihat hasil simulasi yang kita inginkan kita dapat mencentang parameter hasil yang ingin kita presentasikan dalam bentuk grafik terhadap variable waktu.

• Kemudian jika ingin mensimulasikan pada interval waktu tertentu maka (transien), kita bisa klik symbol S yang ada pada bagian model dengan mengubah stop time dan start time sesuai dengan interval waktu yang kita butuhkan.

• Apabila hasil simulasi dirasa belum sesuai dengan keinginan kita (fungsi validasi) disini kita juga bisa mengganti parameter sesuai dengan yang kita inginkan seperti dimensi tangki dan pipa, tetapi tidak bisa dilakukan ketika didalam example.

3. Analisa dan Interpretasi Hasil Pemodelan

Aplikasi simulasi fluida dengan modelica ini bisa sangat kompleks dan bisa didaptkan hasil simulasi yang mendekati hasil eksperimen apabila semua parameter dalam tangki, fluida dan pipa digunakan. Dan dengan aplikasi simulasi modelica ini sangat membantu dalam proses analisa perhitungan aliran fluida yang mengalir dalam pipa.

Pada simulasi 3tanks ini karena tidak ada mesin kerja dan luasan tangki (cross section) sama maka dapat disimpulakan aliran fluida hanya dipengaruhi oleh energi potensial air oleh ketinggian atau dapat dikatakan untuk menyelesaikan simulasi 3tanks secara perhitungan manual dapat menggunakan hukum bernaouli dan mass flow (mencari waktu).

Jadi pada simulasi 3tanks ini gambarannya adalah seperti ini. 3 tanki dengan ukuran diameter sama diisi dengan air dengan volume (height) yang berbeda. Kemudian diasumsikan ada katup pada setiap pipa outlet tangki, dan kemudian valve tersebut dibuka secara bersamaan untuk kemudian dianalisa kapan ketinggian (volume) dari setiap tangki akan menjadi kondisi steady. Nah untuk mendapatkan hasil height tersebut dalam kondisi steady akan memakan waktu sejumlah x second.

Coding3Tank.png
CekList3Tank.png

4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan

Pada 3atanks ini hukum fisika yang berlaku adalah hukum bernaouli dan hukum continuitas/ mass flow (A1v1=A2v2). Karena aliran fluida bekerja hanya dengan perbedaan ketinggian dalam tangki tanpa adanya penambahan tekanan dengan mesin kerja (pompa). Hukum kontinuitas digunakan untuk menentukan nilai t (waktu) sampai kondisi height tank steady.

5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh

Setelah kami lakukan simulasi 3 tanks dengan memasukan parameter yang sesuai dengan soal, maka didapatkan hasil ploting height sb.y (m) terhadap waktu (s). Didapatkan height (m) tangki mencapai kondisi steady/ setimbang pada detik ke 90s. Untuk height (m) tangki sebelum detik ke 90s masih terjadi fluktuasi.

PlotingHeight3Tank.png

Link file simulasi .mo : https://drive.google.com/file/d/1OLJH8PgQ5kWtgOgaD_YL1fs-7Ivq88gl/view?usp=sharing


Pertemuan Keempat


Hari, Tanggal : Kamis, 3 Desember 2020 Oleh : Dr. Ahmad Indra

Tugas 4

1. Bagaimanakah analisa termodinamika (konservasi massa dan energi) pada sistem tersebut, buat skematik analisisnya.

Dalam system diatas terdapat 2 sistem yaitu system dengan gas turbine dan steam turbine. Kedua system pembangkit tersebut menggunakan natural gas sebagai bahan bakarnya, yang digabungkan. System gas turbine menggunakan persamaan siklus brayton dan steam turbine dengan siklus rankine. Berikut ilustrasi dari CCPP yang saya dapatkan dari internet.

Combine Gas Turbine Plant
Gas Turbine

Compressor : Meningkatkan tekanan udara dan temperature udara (P-V, T-s) sebelum dialirkan menuju combustion chamber. Proses pada compressor adalah isentropic-adiabatik.

Combusition Chamber: Tempat dimana udara yang sudah dinaikan pressure dan temperature di kompresor dimixing dengan bahan bakar menyebabkan temperature udara meningkat (Qin, T-s) dengan kondisi isobaric (P-V). Udara panas hasil ruang bakar digunakan untuk menggerakkan turbine. Dan sisa panasnya disalurkan untuk memanaskan air sebelum masuk ke boiler.

Turbine : Gas panas yang memiliki temperature dan pressure tinggi diteruskan ke turbin untuk memutarkan turbin. Hasil dari turbin ada dua. Yaitu power yang nantinya akan diteruskan ke altenator generator dan udara panas hasil dari turbin gas yang akan diteruskan ke Heat Recovery Steam Generator.

Siklus Brayton-Gas Turbine
Multi Steam Turbine Cycle

Heat Recovery Steam Generator adalah equipment yang digunakan untuk menggunakan panas dari terusan turbin gas panas yang digunakan untuk memanaskan air >> uap panas >> uap superheated untuk memutarkan turbin multi stage.

Sisa panas dari HRSG dipanaskan pada boiler (menggunakan gas natural) kemudian uap panas diteruskan unutk memutarkan turbin. Semua turbin yang memutarkan shaft di kopel dengan generator menghasilkan listrik. Pada multi phase steam turbine uap tekanan rendah dimasukan kembali ke condenser. Uap panas diubah menjadi liquid di condenser. Kemudian liquid dipompa lagi ke drum untuk digunakan ulang pada siklus di HRSG.


Skema Ideal Steam Turbine

2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan.

Turbin Gas
Turbin Uap
Boiler
Economizer
Alternator
Kondensor
Pump
Pipe
Valve

3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan.

Medium fluida kerja yang bekerja dalam proses tersebut sebagian besar adalah Mesin Fluida, yaitu:

-Turbin Gas (Menghasilkan Kerja) dari Udara (compresor) >> Udara+Natural Gas (Expansion Chamber) >>P, T naik, Superheated Gas >> U/ Menggerakan Sudu Turbin (Torsi, RPM)

-Turbin Uap (Menghasilkan Kerja) dari Air (Drum) >> Uap (Boiler1) >> Uap Super Panas (Boiler 2) >> U/ Menggerakan Sudu Turbin (Torsi, RPM)

-Pompa Sentrifugal (Membutuhkan Kerja), dari Listrik (Motor Listrik) >> Putaran Dikopel Ke Pompa (RPM, Torsi) >> Fluida Cair Masuk Pompa >> Mendorong Fluida Sampai Head Tertentu

-Kompresor (Membutuhkan Kerja), dari Udara (Lingkungan) >> Udara Dihisap Kedalam Compressor (T, P naik) >> Udara Dialirkan ke Expansion Chamber u/ Dicampur (Natural gas+Udara) >> U/ Memutar Sudu Turbin

Pada Analisa perhitungannya menggunakan hukum konservasi energi dan konservasi massa,


4. Jelaskan flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram tersebut.

Garis Hitam Tebal-Pipa Natural Gas
Garis Hitam Tipis-Pipa Buang Uap dari Turbine

- Jalur hitam Jalur koneksi warna hitam yang tebal pada sistem Combined Cycle Power Plant menunjukkan alur gas yang terjadi pada sistem tersebut. Pada sistem tersebut, ialah jalur buangan gas dari turbine dan dan jalur gas masuk dari lingkungan ke kompresor.

Garis Merah-Pipa Uap Panas (Superheated)

- Jalur merah Jalur koneksi warna merah pada sistem Combined Cycle Power Plant menunjukkan alur fluida high temperature yang terjadi pada sistem tersebut. Jalur fluida tersebut melalui bagian Heat Exchanger, dan menyuplai uap untuk menggerakkan Turbin uap.

Garis Biru-Pipa Fluida/ Air Temperatur Rendah

- Jalur biru Jalur koneksi warna biru pada sistem Combined Cycle Power Plant menunjukkan fluida temperature rendah pada sistem tersebut. Jalur fluida tersebut terdapat di keluaran kondensor menuju pompa yang didorong menuju tangka penyimapanan dan juga proses Heat Exchanger terutama pada bagian economizer, dan tangki penyimpanan.


Pertemuan Kelima


Hari, Tanggal : Kamis, 10 Desember 2020

Gambar Modeling.jpg

Hasil Simulasi Compressor.jpg

Pertemuan Keenam


Hari, Tanggal : Kamis, 17 Desember 2020

Pada hari ini merupakan kuliah tamu yang di isi oleh CEO PT.Indopower International beliau bernama Dr.Ir Harun Al Rosyid.Berikut ialah presentasi yang di sampaikan oleh Bapak Dr.Ir Harun Al rosyid,MM,MT. Turbin berkembang pada tahun 1900 pada tahun 1950 sudah ada 224 turbin gas yang mulai beroperasi dengan kapasitas sebesar 27000 Kw. Pada saat ini kapasitas gas turbin single sebesar 300000 Kw. Pengaplikasian gas turbin biasanya di gunakan di pembangkit listrik. Gas turbin dari beberapa konfigurasi yaitu: -Turbo jet -Turbo Prop -Turbo Shaft -High-bypass -Low bypass Gas turbine di bagi dua tipe : -Heavy duty -Aeroderivate (efisiensi cukup tinggi karena partnya ringan dan compact)

Dasar untuk memilih turbin untuk power plant bukan hanya melihat efisiensi tetapi juga melihat parameter heat rate Combined cycle ialah gabungan antara gas turbin dan turbin uap,untuk memasang combine cycle turbin kita harus melihat performa turbin yang dipasang dinegara asalnya apakah efektif atau tidak dalam arti lain melihat operating cycle dari combine cycle.Tujuan dari combine cycle ialah untuk memanfaatkan panas yang dihasilkan dari gas turbine agar enegri keluaran dari gas turbin dapat digunakan oleh steam turbin. Sebagai engineer kita harus mengecek datasheet dari turbin yang ada dipasaran apakah spesifikasi tersebut valid atau tidak. Pada combine cycle terkadang di passang supplementary firing yang berguna untuk menaikan suhu yang ada di boiler.


Combinecyclepowerplant.jpg
1 gasturbine.jpg
2 gasturbinecycle.jpg
3 combinecycle.jpg

Tugas Besar



Sinopsis

Hasil Simulasi dan Analisis