User:Rasyid.indy

From ccitonlinewiki
Revision as of 14:38, 28 April 2020 by Rasyid.indy (talk | contribs)
Jump to: navigation, search

بِسْمِ اللّهِ الرَّحْمَنِ الرَّحِيْ

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ

BIODATA DIRI

Nama  : Rasyid Indy Nur Sasongko

NPM  : 1806181874

Fakultas/Jurusan  : Teknik/Teknik Mesin

Rasyid Indy Nur Sasongko.S1 Teknik Mesin 2018.Universitas Indonesia


Mekanika Fluida: Selasa, 31 Maret 2020 (PJJ Pertemuan ke-1)

Assalamualaikum Wr. Wb. pada pertemuan mekanika fluida hari ini, pembelajaran ini dilakukan secara jarak jauh atau daring (online) dan menggunakan aplikasi yang bernama Zoom.us dan dipandu oleh Asisten Dosen mata kuliah Mekanika Fluida, yaitu Bang Muhammad Hilman Gumelar Syafei yang mempunyai nama panggilan Bang Edo. Bang Edo merupakan salah satu alumni Teknik Mesin 2014 dan sekarang sedang mengambil S2 atas bimbingan Pak Dai.

Secara garis besar, Bang Edo memberikan 2 materi yang berbeda yaitu mengenai Viskositas Fluida atau Kekentalan Fluida dengan menjelaskan materi melalui presentasi dan dilanjutkan dengan simulasi aliran tersebut melalui software CFDSOF v1.5.

Kemudian pada awal penjelasan materi Bang Edo menjelaskan tentang Aliran Laminar dan Turbulent serta membahas Reynolds Number dan memberikan beberapa pertanyaan yang dijadikan pekerjaan rumah yang akan saya cantumkan di bagian bawah pada summary pembelajaran hari Selasa, 31 Maret 2020.

Setelah penjelasan materi dengan presentasi selesai, Bang Edo melanjutkan dengan pengenalan software CFD-SOF. Setelah saya mendengar penjelasan apa itu aplikasi CFD-SOF, saya dapat menyimupulkan bahwa aplikasi CFDSOF merupakan aplikasi yang berguna untuk melakukan simulasi terhadap aliran fluida.

SIMULASI CFDSOF

Bang Edo memberikan materi dan pengenalan terhadap aplikasi CFDSOF ini secara efektif dan jelas. Fungsi share screen yang merupakan salah satu fasilitas di aplikasi Zoom pun dimanfaatkan dengan baik sehingga saya pun bisa mengikuti arahan Bang Edo dengan baik. Dan saya dapat menyimpulkan bahwa, CFDSOF merupakan software simulasi analisis rekayasa berbasis Computational Fluid Dynamics (CFD). Dalam simulasi dibuat geometri yang berbentuk box dan ukuran dimensi yang menggunakan sumbu x,y,z. Simulasi tersebut terbagi atas penentuan base mesh, generate mesh, check mesh, simulation model, fluid properties, dan boundary condition dan di akhir simulasi menekan tombol pada solver. Berikut beberapa gambar yang bisa saya ambil ketika saya mencoba aplikasi CFDSOF dengan arahan Bang Edo:


Gambar.png


Tahap selanjutnya yaitu dengan menggunakan aplikasi parallel dari CFDSOF untuk penentuan nilai p pada area geometri, dimana pada hasil simulasi terdapat sebaran area yang berubah dari besar ke kecil. Area Inlet mendapat pressure terbesar dan berangsur mengecil sampai outlet. Berikut gambarnya :


Hayo.png


Grafik dari hasil simulasi dengan hubungan momentum residual vs waktu, dengan 110 iterasi yang dihasilkan. Run time dibuat dengan 1000 unit. Berikut gambarnya :


Kuy.png


PERTANYAAN DARI ASISTEN DOSEN

1. Apa itu entrance region/aliran masuk?

2. Apa itu fully developed flow/aliran berkembang sempurna?

3. Apa itu entrance length?

4. Apa pengaruh viskositas? dan pengaruh pressure drop dalam pipa?

5. Bagaimana cara menghitung pressure drop suatu aliran dalam laminar/turbulen?

Jawaban dari PR tersebut adalah :

1. Entrance region adalah suatu area atau wilayah yang berada didekat dengan tempat masuknya fluida ke pipa atau bagian pertama dari suatu tempat aliran yang masuk dari suatu sumber aliran fluida itu mengalir.

2. Fully Developed Flow adalah kondisi dimana profil kecepatan fluida akan tetap besarnya. Pada kondisi ini, aliran fluida sudah tidak dipengaruhi oleh efek viskositas dan suda keluar dari boundary layer. Kecepatan fluida untuk aliran berkembang ini titik tercepatnya adalah di garis tengah pipa.

3. Entrance Length adalah panjang dari suatu aliran dari awal masuk hingga mencapai kondisi dimana aliran berkembang secara sempurna.

Untuk Aliran Laminar : le/D = 0,06 Re

Untuk Aliran Turbulent : le/D = 4,4(Re)^1/6

4. Pengaruh viskositas dan pengaruh pressure drop dalam pipa adalah sebagai berikut :

Viskositas dapat diartikan sebagai ukuran yang menyatakan kekentalan dari suatu cairan atau fluida. Kekentalan merupakan sifat cairan yang berhubungan erat dengan hambatan agar mengalir. Viskositas cairan tersebut akan menimbulkan gesekan antar bagian atau lapisan cairan yang bergerak. Di dalam suatu pipa jika semakin besar viskositas semakin sulit fluida dalam pipa tersebut untuk bergerak. Lalu Pressure drop adalah penurunan tekanan dari satu titik dalam sistem salah satu contohnya adalah pipa ke titik lain yang memiliki tekanan lebih rendah. Aplikasi pada pipa pressure drop meningkat sebanding dengan gesekan dalam jaringan pipa, hal ini pun berlaku untuk sebaliknya.

5. Cara menghitung pressure drop suatu aliran dalam laminar/turbulen :

ΔP = f.1/2.l/D.ρ.V^2

f = 64/Re

Dengan keterangan sebagai berikut :

Keterangan :

ΔP = Pressure drop (perbedaan tekanan) (Pa)

l = Panjang pipa pengukuran tekanan (m)

D = diameter pipa (m)

ρ = Densitas fluida (kg/m^3)

V = Kecepatan aliran fluida (m/s)

Re = Bilangan Reynold : Laminar (<2100) Turbulen (>2100)

Mekanika Fluida : Rabu, 1 April 2020 (PJJ Pertemuan ke-2)

Assalamualaikum Wr. Wb. pada pertemuan kali ini dijelaskan dalam pengaplikasian mekanika fluida melalui 3 tahapan konservasi. Ketiga tahapan tersebut harus dipahami terlebih dahulu agar mudah dalam mengerjakan pengaplikasian mekanika fluida tersebut. Tiga konservasi tersebut adalah sebagai berikut :

1. Konservasi Massa

Dimana dalam suatu sistem massa total mengalami perubahan secara totoal artinya dapat berubah terhadap jarak atau ruang dan waktu, maka perubahan tersebut dapat diasumsikan sama dengan 0.

Tyu.PNG


2. Konservasi Energi

Dimana dalam suatu sistem energi total mengalami perubahan secara total artinya dapat berubah terhadap jarak atau ruang dan waktu, maka perubahan energi tersebut dapat diasumsikan sebagai W atau kerja dan energi panas atau Q.

Ert.PNG


3. Konservasi Momentum

Dimana dalam suatu sistem kecepatan dan momentum berubah terhadap jarak atau ruang dan waktu, maka perubahan tersebut dapat diasumsikan dengan sigma F atau total gaya yang terjadi.

Iop.PNG

Dari persamaan tersebut dapat diturunkan untuk mendapatkan persamaan naviar stoke, persamaan tersebut dapat diaplikasikan pada aliran laminar sebagai contohnya. Kemudian entrance region yaitu aliran masuk fluida belum sepenuhnya berkembang, kemudian fully developed flow yaitu aliran yang memiliki kecepatan berkembang sepenuhnya pada pipa, contohnya entrenace length yaitu jarak yang ditempuh suatu fluida setelah memasuki inlet sebelum berkembang sepenunya.

Rasyid.PNG

Kemudian setelah itu kami diberikan simulasi tentang bagaimana mencari pressure drop menggunakan aplikasi CFDSOF. Dengan menggunakan kalkulator didalam aplikasi CFDSOF serta melakukan latian soal seperti pada gambar dibawah ini :

Qwer.jpeg

Mekanika Fluida: Selasa, 7 April 2020 (PJJ Pertemuan ke-3)

Assalamualaikum Wr. Wb. pada pertemuan kali ini dimulai dari Pak Dai menjelaskan materi tentang persamaan matematis aliran fluida (governing equation) yang mengatur bagaimana aliran fluida. Pak Dai juga memberikan hal tersebut dengan file yang beliau berikan :

Laminar flow through the parallel- plate analytical sol 1.png

Dalam penjelasan tersebut Pak Dai juga menjelaskan mengenai pengaruh dari viskositas dan kecepatan aliran dalam mempengaruhi atau merubah nilai dari fully developed flow dan entrance length. Pak Dai juga menjelaskan bilangan Reynolds, ialah perbandingan antara inersia force dan friction force, kemudian bilang Reynolds mempengaruhi bentuk aliran, dimana bilangan Reynold yang kecil cenderung mengarah ke aliran laminar begitu pun sebaliknya.

Re = Inertia Force/Friction Force

Selanjutnya Pak Dai memberikan soal 8.2 sebagai berikut :

Soal 8.2.jpg

Mekanika Fluida: Rabu, 8 April 2020 (PJJ Pertemuan ke-4)

Assalamualaikum Wr. Wb. pada pertemuan kali ini diawali dengan penjelasan oleh Pak Dai dengan membahas soal 8.4 dari buku Munson. Beliau menyebutkan bahwa fluida merupakan zat yang terdeformasi secara terus menerus. Hal itu menyebabkan perubahan momentum dari lapisan ke lapisan. Untuk bilangan Reynolds yang rendah maka lapisan akan bergerak secara ideal karena terpengaruh oleh efek viskositas yang besar. Tidak adanya lapisan yang memotong lapisan lain maka disebut juga dengan Aliran Laminar untuk Re yang besar, lapisan mulai berosilasi (saling memotong atau tidak) maka disebut dengan aliran Aliran Transisi. Aliran turbulent mempunyai Re yang besar pula. kecepatan aliran pada aliran turbulen di titik masuk, kecepatan selalu berubah sehingga disebut dengan Rapid Fluctuation

Untuk mengetahui tegangan geser, dapat dicari dengan medlan aliran untuk mengetahui kecepatan lokal di setiap titik (U). Pada aliran Turbulent, sulit untuk memnentukan kecepatan lokal di setiap titik karena kecepatannya yang selalu berubah-ubah. Dan untuk memperkirakan kecepatan lokal di suatu titik maka perlu melalui pendekatan statistik. Dapat diuraikan menjadi kecepatandan kecepatan fluktuasi yaitu dengan persamaan :

Va = Vbar + V'

Aliran Turbulent tersebut mengalami pusaran-pusaran yang disebut dengan Eddies. Setiap pusaran memiliki Eddies yang berbeda-beda pada aliran turbulent. Waktu yang dibutuhkan untuk menjalani satu pusaran dinamakan dengan Longest Fluctuation.

Kemudian setelah itu, Bang Edo menjelaskan hasil simulasi antara aliran laminar dan terbulen. Dan hasil yang dijelaskan adalah pada simulasi tersebut aliran turbulen, efek viskositas atau daerah biru menjadi semakin tipis. Kemudian didapat grafik, dari grafik tersebut dapat dibandingkan bahwa kurva yang cokelat yaitu laminar dan biru adalah turbulent. Pada grafik tersebut juga, grafik biru menunjukkan bahwa pada titikdimana fluida mulai menjauhi dinding pipa, maka efek viskositas dan tegangan geser dindind semakin berkurang. Sehingga yang menjadi dominan adalah tegangan geser turbulen.

Mekanika Fluida: Selasa, 14 April 2020 (PJJ Pertemuan ke-5)

Assalamualaikum Wr.Wb. pada pertemuan kali ini, Pak Dai mengadakan Quiz 1 dimana kami harus membuat artikel yang topiknya berhubungan dengan Soal-Jawab Mekanika Fluida nomor 1-6. Berikut merupakan artikel yang saya buatuntuk quiz ini :

1. Analytical Solution of Laminar Flow Throw the Parallel-Plate

Konsep Aliran Luminar dan Penggunaan Governing Equation

Aliran laminar adalah aliran cairan atau gas dimana fluida melewati saluran secara teratur atau lancar. Kemudian pada aliran ini tekanan, kecepatan, dan property lainnya tetap pada keadaan yang konstan. Dalam dinamika fluida, aliran laminar ini terjadi ketika aliran fluida di lapisan parallel dengan tidak adanya gangguan antar lapisan. Aliran laminar ini juga mempunyai gerakan partikel yang sangat teratur dengan semua partikel bergerak dalam garis lurus sejajar dengan dinding pipa. Aliran laminar ini juga cenderung terjadi pada aliran yang mempunyai kecepatan yang rendah. Partikel fluida mengalir atau bergerak dengan bentuk garis lurus dan sejajar. Kemudian pada kecepatan rendah itu aliran laminar tergambar sebagai filamen panjang yang mengalir sepanjang aliran. Aliran laminar mempunyai bilangan Reynold lebih kecil dari 2300. Kemudian pada case nomor 1, aliran laminar dianggap steady dan incompressible melalui suatu plat parallel, maka fluida yang melewatiplat tersebut mempunyai kecepatan dan tekanan yang konstan di semua titik. Pada mekanika fluida terdapat 3 rumus dasar, yaitu hukum konservasi energi, hukum konservasi massa, dan hukum konservasi momentum.

Untuk analisis studi kasus tersebut digunakan konservasi momentum untuk menganalisis keceptasan fluida pada aliran laminar dalam plat parallel.

Iop.PNG

2. Laminar Parallel Plate Flow - CFD Simulation

Hubungan Bilangan Reynolds dengan Aliran Luminar

Pada kasus kali ini, kita diperkenalkan dengan konsep Reynold number, yaitu suatu unit tak berdimensi yang menunjukan sifat aliran fluida tersebut. Reynold number secara definisi adalah perbandingan antara Gaya inersia dengan gaya gaya tegang (friction force). Bilangan reynold yang berbeda-beda akan menunujukan profil kecepatan fluida yang berbeda-beda pula. Kecepatan yang rendah dalam suatu aliran itu menunjukan bahwa suatu aliran mempunyai aliran yang berjenis laminar. Karena aliran laminar mempunyai ciri khas yaitu kecepatan yang rendah dan konstan.

3. Turbulent Parallel Plate Flow - CFD Simulation Case Study

Konsep Aliran Turbulent

Pada kasus ini dapat diketahui bahwa, aliran fluida dapat bergerak dalam bentuk lapisan-lapisan melalui pertukaran molekuler yang hanya terjadi diantara lapisan-lapisan yang berdekatan dengan kondisi tersebut. Kondisi ini akan menimbulkan gangguan yang semakin besar hingga tercapai kondisi peralihan pada kecepatan aliran yang bertambah besar atau efek viskositas yang berkurang. Kondisi terlampauinya peralihan menyebabkan sebagian gangguan tersebut semakin kuat, partikel bergerak secara acak dan terjadi pencampuran gerak antar partikel yang berbatasan di dalam lapisan-lapisan tersebut. Hal itu dinamakan dengan aliran turbulent.

4. Soal Jawab Mekanika Fluida, Munson, Example 8.2 Laminar Pipe Flow

Diketahui


viscousity μ = 0.40 N.s/m2

density ρ = 900 kg/m3

diameter D = 0.020 m

Ditanyakan

a) pressure drop (Δp=p1-p2), Q=2×10^-5 m3/s, l=x2-x1=10 m

b) θ saat p1=p2

c) Jika p1 - 200 kPA, berapa tekanan (p) pada x3=5m

dalam hal ini diketahui bahwa kita mengetahui jika kasus tersebut termasuk kasus pada aliran laminar melalui sebuah pipa. Untuk menjawab kasus diatas kita dapat menggunakan Hukum II Newton. Kita juga harus menganalisis gaya-gaya apa saja yang bekerja pada pipa tersebut.

5.Turbulent Pipe Flow Properties, Example 8.4, FFM, Munson Et. AI

Pengaruh Pressure Drop dan Efek viskositas Terhadap Suatu Aliran

Pressure drop didefinisikan sebagai perbedaan tekanan antara dua titik dari jaringan pembawa cairan. Pressure drop terjadi dengan gesekan kekuatan, yang disebabkan oleh resistensi terhadap aliran, pada fluida yang mengalir melalui tabung. Penentu utama resistensi terhadap aliran fluida adalah cairan kecepatan melalui pipa dan cairan viskositas. Pressure drop meningkat sebanding dengan gesekan dalam jaringan pipa. Panjang pipa, diameter pipa, dan kekasaran permukaan pipa juga ikut mempengaruhi hal tersebut. Viskositas juga ikut mempengaruhi dan menimbulkan gaya geser yang bersifat menghambat.

6. Comparison of Laminar or Turbulent Pressure Drop

Pengaruh Perubahan Aliran yang Menyebabkan Pressure Drop

Dalam kasus ini, kita mengetahui bahwa aliran laminar itu mengalir dengan kecepatan yang sama atau konstan. Sedangkan ketika aliran mulai tidak konstan atau berubah dan bergerak menjadi bergejolak maka fluida tersebut sudah berubah menjadi aliran turbulen. Kedua aliran dapat menggalami penurunan tekanan atau Pressure Drop karena adanya gangguan dari luar atau dari permukaan yang yang tidak baik atau kasar. Untuk mengetahui seberapa besar pressure drop tersebut kita dapat melakukan uji coba pada aliran transisi yang terjadi di tengah-tengah aliran laminar dan turbulen terjadi. Aliran transisi tersebut diuji dengan Besar Bilangan Reynolds.

Mekanika FLuida: Rabu, 15 April 2020 (PJJ Pertemuan ke-6)