Difference between revisions of "Teddy Tumenggung"

From ccitonlinewiki
Jump to: navigation, search
(Design & Optimization of Pressurized Hydrogen Storage)
(Design & Optimization of Pressurized Hydrogen Storage)
Line 29: Line 29:
  
 
'''Determine the required storage capacity'''
 
'''Determine the required storage capacity'''
 +
 
In case we need to calculate the amount of hydrogen to store based on specific application. Consider factors such as daily demand, peak usage, and storage duration. This will help to  determine the size and number of storage tanks required.
 
In case we need to calculate the amount of hydrogen to store based on specific application. Consider factors such as daily demand, peak usage, and storage duration. This will help to  determine the size and number of storage tanks required.
  
 
'''Select the storage tank type'''
 
'''Select the storage tank type'''
 +
 
There are several types of storage tanks for pressurized hydrogen, including steel cylinders, composite cylinders, and cryogenic tanks.
 
There are several types of storage tanks for pressurized hydrogen, including steel cylinders, composite cylinders, and cryogenic tanks.
  
 
'''Assess the storage pressure'''
 
'''Assess the storage pressure'''
 +
 
We need to determine the appropriate storage pressure for application. Higher pressure allows for more hydrogen to be stored in a given volume but requires stronger and more expensive storage tanks.
 
We need to determine the appropriate storage pressure for application. Higher pressure allows for more hydrogen to be stored in a given volume but requires stronger and more expensive storage tanks.
  
 
'''Analyze safety considerations'''
 
'''Analyze safety considerations'''
 +
 
Safety is paramount when designing a hydrogen storage system. Evaluate the safety features required for your specific application, such as pressure relief devices, leak detection systems, and adequate ventilation. Ensure compliance with applicable safety standards and regulations to minimize the risk of accidents.
 
Safety is paramount when designing a hydrogen storage system. Evaluate the safety features required for your specific application, such as pressure relief devices, leak detection systems, and adequate ventilation. Ensure compliance with applicable safety standards and regulations to minimize the risk of accidents.

Revision as of 10:14, 2 June 2023

Introduction

Introduction Assalamualaikum Warahmatullahi Wabarakatuh, Perkenalkan saya Teddy Tumenggung mahasiswa Teknik Perkapalan 2021 dengan NPM 2106704194. Saya lahir di Jakarta pada tanggal 01 Januari 2003 dan berdomisili di Kabupaten Bogor.

Perkuliahan 26/05/23

Pertemuan Pertama merupakan kelas pertama Metode Numerik dengan dosen Dr. Ir. Ahmad Indra Siswantara atau dipanggil dengan Pak DAI. Kelas dimulai dengan beliau memperkenalkan diri terlebih dahulu kepada mahasiswanya. Dilanjutkan dengan membahas seberapa tertariknya mahasiswa dengan mata kuliah Metode Numerik ini dengan menunjuk ke beberapa mahasiswa yang ada dikelas. Beliau mengaskan kepada mahasiswanya untuk memanfaatkan potensi yang dimiliki sebaik mungkin dan menekankan kepada mahasiswanya untuk memanfaatkan waktu sebaik mungkin untuk belajar dengan mandiri tidak hanya pada saat perkuliahan dan juga berinteraksi dengan dosen. Lalu beliau mencoba untuk mengajak mahasiswa untuk lebih memahami Metode Numerik dengan memberikan contoh soal serta memberikan penugasan agar mahasiswa lebih memahami penerapan Metode Numerik ini dalam kehidupan aktual.

Design & Optimization of Pressurized Hydrogen Storage

Specification

Volume  : 1 Liter

Pressure : 8 bar

cost  : Rp 500.000

Hydrogen is the most abundant gas in nature, which is around 75%. This makes people think about making hydrogen as a renewable energy. Hydrogen is considered a renewable energy source because it can be produced using abundant natural resources such as water and solar energy. One of the advantages of hydrogen as a renewable energy is that when it is used as a fuel, the reaction produces only water as a by-product, without the emission of greenhouse gases or other pollutants. In order to use energy sourced from hydrogen, of course we need a storage. With my limitations in designing I concius that I need help in this case to get information using GPT Chat and another resource. To designing pressurized hydrogen storage requires considering the following factors:

1. Pressure levels

2. Storage methods

3. Materials

4. Integration with renewable energy

And there are several steps in designing this hydrogen storage

Determine the required storage capacity

In case we need to calculate the amount of hydrogen to store based on specific application. Consider factors such as daily demand, peak usage, and storage duration. This will help to determine the size and number of storage tanks required.

Select the storage tank type

There are several types of storage tanks for pressurized hydrogen, including steel cylinders, composite cylinders, and cryogenic tanks.

Assess the storage pressure

We need to determine the appropriate storage pressure for application. Higher pressure allows for more hydrogen to be stored in a given volume but requires stronger and more expensive storage tanks.

Analyze safety considerations

Safety is paramount when designing a hydrogen storage system. Evaluate the safety features required for your specific application, such as pressure relief devices, leak detection systems, and adequate ventilation. Ensure compliance with applicable safety standards and regulations to minimize the risk of accidents.