Reza Adyanto

From ccitonlinewiki
Revision as of 14:29, 2 December 2020 by Reza Adyanto (talk | contribs) (Minggu 3 (25 November 2020))
Jump to: navigation, search

Biodata

Reza Adyanto.jpg

Nama  : Reza Adyanto Nugroho

NPM  : 1806201485

TTL  : Leeds, 28 Maret 2000

Tempat Tinggal: Jakarta

Hobi  : olahraga


Assalamualaikum Wr.Wb. Nama saya adalah Reza Adyanto, Saya adalah Mahasiswa Teknik Mesin Universitas Indonesia angkatan 2018. Pada tahun ini (2020) Saya sedang menganmbil mata Kuliah Metode Numerik.







Minggu 1 (11 November 2020)

Pada pertemuan minggu Pertama ini, dijelaskan tujuan-tujuan pembelajaran metode numerik, yaitu: Tujuan:

  • 1.Memahami konsep-konsep dan prinsip-prinsip dasar dalam metode numerik, Contoh:Persamaan aljabar, algorithma, dll.
  • 2.Mengerti aplikasi metode numerik.
  • 3.Mampu menerapkan metode numerik dalam persoalan teknik.
  • 4.Mendapat nilai tambah/adab sehingga kita menjadi orang yang lebih beradab.

Tugas Minggu 1

Untuk tugas pertama, kami diminta mempelajari Open Modelica, yaitu sebuah aplikasi untuk membuat modelling dan simulasi. Aplikasi ini biasa digunakan di bidang industri maupun akademis.

Kemudian Saya mencoba membuat model sederhana yaitu sistem katrol Video pembelajaran dapat diakses di link:

Minggu 2 (18 November 2020)

Pada pertemuan kali ini, Pak Dai membuka pertemuan dengan memberi pembelajaran berupa sebagai manusia, kita harus memiliki perubahan setiap harinya, hari ini harus lebih baik dari hari kemarin. Sebelum memasuki materi pembelajaran metode numerik, Mahasiswa diminta mereview fungsi pembelajaran aljabar linear dan hubungannya dengan metode numerik. Kemudian, menceritakan pengalaman mempelajari aplikasi Open Modelica. Dan dari yang saya pelajari, aplikasi ini dibuat dengan tujuan bahasa pemodelan, bukan coding. Namun, ketika melakukan perhitungan, code yang ditulis harus dalam bahsa C++. Salah satu alasan pemilihan penggunaan aplikasi ini adalah karena Open Modelica dibuat open dan free, yang dimana semua orang boleh menggunakannya. Open Modelica mempunyai beberapa fitur, seperti membuat model, class, connector, expanable connector, record, function, dan lain-lain. Aplikasi ini object oriented, kita bisa membuat beberapa class fungsi dan class eksekusi, kemudian menggabungkannya ke dalam satu model, dengan pembelajaran hari dapat disebut sebagai sistem panggil.

Tugas Minggu 2

Untuk Tugas minggu 2, kami diminta untuk mempeljari kembali openmodelica dan melakukan sistem panggil dengan class dan function. Dan berikut adalah tugas saya, saya menggunakan contoh soal matriks ordo 3x3, dan berikut videonya:

Minggu 3 (25 November 2020)

pertemuan kali ini diawali dengan Pak Dai menanyakan progres belajar mandiri dari mahasiswa yang hadir. Kemudian menlanjutkan dengan dibahas aplikasi metode numerik pada suatu permasalahan. Dengan beberapa metode yang dapat digunakan yaitu Stokastik, CFD, dan FEA. Dalam proses menyelesaikan masalah teknik, angkah yang harus dilakukan adalah melakukan analisis, kemudian membuat model matematis, dengan menggunakan metode numerik untuk melakukan penyelesaian (menggunakan computer), dan mendapatkan solusi dari permasalahan.

Soal 3.1.jpg melakukan globe code Matriks 1.jpg Matriks 2.jpg Eq 1.jpg

dan kami diminta untuk mengerjakan soal


Tugas minggu 3.jpeg

Jawab 1.jpg Jawab 2.jpg Jawab 3.jpg Jawab 4.jpg


kemudian setelah didapatkan hasil-hasilnya, untuk mencari displacement, perlu diberikan boundary dan external load (beban tambahan) yang dibuatkan dalam bentuk matriks A.

MessageImage 1606893984890.jpg


model truss3_1 parameter Real A=0.001;//luas parameter Real E=200*10^9;//modulus elastisitas parameter Real L1=1;//Panjang batang 1,2 parameter Real L2=1.25;//Panjang batang 4 parameter Real L3=1.6;//panjang batang 3,5 parameter Real t1=0;//sudut batang 1.Node 1 dan 2. parameter Real t2=0;//sudut batang 2. Node 2 dan 3. parameter Real t3=4.04;//sudut batang 3.Node 3 dan 4. parameter Real t4=4.7;//sudut batang 4. Node 2 dan 4. parameter Real t5=5.4;//sudut batang 5. Node 1 dan 4. Real d1[8,8]=[(cos(t1))^2,sin(t1)*cos(t1),-(cos(t1))^2,-sin(t1)*cos(t1),0,0,0,0;

              sin(t1)*cos(t1),(sin(t1))^2,-sin(t1)*cos(t1),-(sin(t1))^2,0,0,0,0;
              -(cos(t1))^2,-sin(t1)*cos(t1),(cos(t1))^2,sin(t1)*cos(t1),0,0,0,0;
              -sin(t1)*cos(t1),-(sin(t1))^2,sin(t1)*cos(t1),(sin(t1))^2,0,0,0,0;
              0,0,0,0,0,0,0,0;
              0,0,0,0,0,0,0,0;
              0,0,0,0,0,0,0,0;
              0,0,0,0,0,0,0,0];           

Real d2[8,8]=[0,0,0,0,0,0,0,0;

             0,0,0,0,0,0,0,0;
             0,0,(cos(t2))^2,sin(t2)*cos(t2),-(cos(t2))^2,-(sin(t2)*cos(t2)),0,0;
             0,0,sin(t2)*cos(t2),(sin(t2))^2,-(sin(t2)*cos(t2)),-(sin(t2))^2,0,0;
             0,0,-(cos(t2))^2,-(sin(t2)*cos(t2)),(cos(t2))^2,sin(t2)*cos(t2),0,0;
             0,0,-(sin(t2)*cos(t2)),-(sin(t2))^2,sin(t2)*cos(t2),(sin(t2))^2,0,0;
             0,0,0,0,0,0,0,0;
             0,0,0,0,0,0,0,0];

Real d3[8,8]=[0,0,0,0,0,0,0,0;

             0,0,0,0,0,0,0,0;
             0,0,0,0,0,0,0,0;
             0,0,0,0,0,0,0,0;
             0,0,0,0,(cos(t3))^2,sin(t3)*cos(t3),-(cos(t3))^2,-sin(t3)*cos(t3);
             0,0,0,0,sin(t3)*cos(t3),(sin(t3))^2,-sin(t3)*cos(t3),-(sin(t3))^2;
             0,0,0,0,-(cos(t3))^2,-sin(t3)*cos(t3),(cos(t3))^2,sin(t3)*cos(t3);
             0,0,0,0,-sin(t3)*cos(t3),-(sin(t3))^2,sin(t3)*cos(t3),(sin(t3))^2];               

Real d4[8,8]=[0,0,0,0,0,0,0,0;

             0,0,0,0,0,0,0,0;
             0,0,(cos(t4))^2,sin(t4)*cos(t4),0,0,-(cos(t4))^2,-sin(t4)*cos(t4);
             0,0,sin(t4)*cos(t4),(sin(t4))^2,0,0,-sin(t4)*cos(t4),-(sin(t4))^2;
             0,0,0,0,0,0,0,0;
             0,0,0,0,0,0,0,0;
             0,0,-(cos(t4))^2,-sin(t3)*cos(t4),0,0,(cos(t4))^2,sin(t4)*cos(t4);
             0,0,-sin(t4)*cos(t4),-(sin(t4))^2,0,0,sin(t4)*cos(t4),(sin(t4))^2];             

Real d5[8,8]=[cos(t5)^2,sin(t5)*cos(t2),0,0,0,0,-(cos(t5))^2,-(sin(t5)*cos(t5));

             sin(t5)*cos(t5),(sin(t5))^2,0,0,0,0,-(sin(t5)*cos(t5)),-(sin(t5))^2;           
             0,0,0,0,0,0,0,0;  
             0,0,0,0,0,0,0,0;   
             0,0,0,0,0,0,0,0;
             0,0,0,0,0,0,0,0;   
            -(cos(t5))^2,-(sin(t5)*cos(t5)),0,0,0,0,(cos(t5))^2,sin(t5)*cos(t5);
            -(sin(t5)*cos(t5)),-(sin(t5))^2,0,0,0,0,sin(t5)*cos(t5),(sin(t5))^2];

Real k1; Real k2; Real k3; Real K1[8,8]; Real K2[8,8]; Real K3[8,8]; Real K4[8,8]; Real K5[8,8]; Real KG[8,8];

equation k1=A*E/L1; k2=A*E/L2; k3=A*E/L3; K1=k1*d1; K2=k1*d2; K3=k3*d3; K4=k2*d4; K5=k3*d5; KG=K1+K2+K3+K4+K5;


end truss3_1;


model Tugas_minggu3 parameter Real A[8,8]=[10^6,0,0,0,0,0,0,0;

                      0,10^6,0,0,0,0,0,0;
                     -2*10^8,0,4*10^8,1.98*10^6,-2*10^8,0,-0.0245566,-1.9*10^6;
                      0,0,1.98*10^6,1.59*10^8,0,0,-1.9*10^6,-1.5*10^8;
                      0,0,0,0,10^6,0,0,0;
                      0,0,0,0,0,10^6,0,0;
                      -5*10^7,6.13*10^7,-0.0245566,-1.5*10^6,-4.8*10^7,-6*10^7,9.88*10^7,1.58*10^6;
                      6.13*10^6,-7.4*10^7,-1.9*10^6,-1.5*10^8,-6*10^7,-7.6*10^7,1.58*10^6,3.11*10^8];//apply boundary

parameter Real B[8]={0,0,-1035.27618,3863.703305,0,0,-1035.27618,3863.703305};//external load parameter Real KG[8,8]=[2.5*10^8,-9.6*10^7,-2*10^8,0,0,0,-5*10^7,6.13*10^7;

                      -6.1*10^7,7.46*10^7,0,0,0,0,6.13*10^7,-7.4*10^7;
                     -2*10^8,0,4*10^8,1.98*10^6,-2*10^8,0,-0.0245566,-1.9*10^6;
                      0,0,1.98*10^6,1.59*10^8,0,0,-1.9*10^6,-1.5*10^8;
                      0,0,-2*10^8,0,2.48*10^8,6.09*10^7,-4.8*10^7,-6*10^7;
                      0,0,0,0,6.09*10^7,7.65*10^7,-6*10^7,-7.6*10^7;
                      -5*10^7,6.13*10^7,-0.0245566,-1.5*10^6,-4.8*10^7,-6*10^7,9.88*10^7,1.58*10^6;
                      6.13*10^7,-7.4*10^7,-1.9*10^6,-1.5*10^8,-6*10^7,-7.6*10^7,1.58*10^6,3.11*10^8];                         

parameter Real F[8]={0,0,-1035.27618,3863.703305,0,0,-1035.27618,3863.703305};//force Real U[8];//displacement Real R[8];//reaction equation U=truss3_1(A,B); R=(KG*U)-F; end Tugas_minggu3;