From ccitonlinewiki
(Redirected from Rawhul Ihsan Setyoko)
Jump to: navigation, search

INTRODUCTION Saya Rawhul Ihsan Setyoko dengan NPM 2106639371, mahasiswa Teknik Perkapalan 2021, saya lahir di jakarta 13 Agustus 2003

My Concious Effort on Numerical Method Learning and Its Application in Hydrogen Storage Design



Design & Optimization of Pressurized Hydrogen Storage

Study Case

Design and Optimization of Prezzurized Hydrogen Storage

Capacity : 1 L

Pressure : 8 bar

Cost should not exceed Rp. 500000

Design Optimization and Material Choosing

in some research, the best material for optimazing the performance of the storage is to use layers, layers are the combine system of two or more material to maximise the effect of both material, in this case we use 2 material :

1. GFRP (Glass Fiber Reinforced Plastic)

2. Alumunium

To maximize the performance of the storage, we can use 2 layer of material, those material are metallic and composite polymeric layers thicknesses, number of composite layers and winding angle of filament-wound composite, were studied. Using Numerical Method Finite Element Analysis on a parametric study including 64 cases, shooting minimum tank weight and cost was performed. Using different thickness of composite polymeric layers is significant the same over all composite layers thickness Optimal design was found to be 8 mm thickness of Aluminum liner and one composite layer of high toughness GFRP material with thickness of 6 mm at angle 65°

Using Sorption - Based Storage

The timing between supply and energy demand cause calls for reliable storage system. In this current years, energy storage system become further significant with the widespread implementation of renewable energy. Hydrogen is being a renewable energy with the most demands past the current years, that makes hydrogen storage keep being upgraded to provide the most efficient storage at minimum price, with the research I did from reading many sources, that one journal says that hydrogen storage with sorption based storage system exibit huge potential due to a high energy density. An average temperature lift of 25 °C, energy density of 40 kWh/m3 , and energy efficiency of 73% were obtained.

Do the Life Cycle Assessment method

Life cycle assessment method for determine the tube life cycle from the storage material until it’s not being used anymore, the main factor from this method is knowing whether this storage are toxic to the nature around. the step of doing this assessment are :

1. Objective and scope analysis

Ensure that when the product has passed the limit of use / old age, then the product will be treated in such a way that it does not damage and disturb nature.

2. Inventory Analysis

environmental influences in each stage of the analysis

3. Environmental Impact Analysis

material impact on the environment

4. Result Interpretation


using two different layers material based on research, Alumunium and GFRP, we can generate the codes

   import math
   def calculate_optimal_thickness(volume, pressure, tensile_strength_aluminum, tensile_strength_gfrp):
   # Constants
   safety_factor = 4  # Safety factor for design
   # Calculation
   total_thickness = (volume * pressure) / (2 * math.pi * (tensile_strength_aluminum / safety_factor + tensile_strength_gfrp / safety_factor))
   thickness_aluminum = total_thickness * (tensile_strength_aluminum / safety_factor) / (tensile_strength_aluminum / safety_factor + tensile_strength_gfrp / safety_factor)
   thickness_gfrp = total_thickness - thickness_aluminum
   return thickness_aluminum, thickness_gfrp
   # Input values
   volume = 1  # Volume in liters
   pressure = 8 * math.pow(10, 5)  # Pressure in Pascals (1 bar = 10^5 Pascals)
   # Convert volume to cubic meters
   volume = volume / 1000
   # Convert pressure to Pascals
   pressure = pressure * math.pow(10, 5)
   # Material properties
   tensile_strength_aluminum = 276 * math.pow(10, 6)  # Tensile strength of aluminum in Pascals
   tensile_strength_gfrp = 500 * math.pow(10, 6)  # Tensile strength of glass fiber reinforced plastic in Pascals

   # Calculate optimal thickness
   aluminum_thickness, gfrp_thickness = calculate_optimal_thickness(volume, pressure, tensile_strength_aluminum, tensile_strength_gfrp)
   # Output
   print(f"The optimal thickness for a hydrogen tube with a {volume} m^3 capacity and {pressure} Pa pressure is split between aluminum thickness: {aluminum_thickness} 
   meters and GFRP thickness: {gfrp_thickness} meters.")

The optimal thickness for a hydrogen tube with a 1 L capacity and 0.8 mPa pressure is split between aluminum thickness: 3 mm GFRP thickness: 4 mm

Height and Diameter

next we determine the height and diameter of the tube

   import math
   def calculate_optimal_dimensions(volume, pressure):
   # Constants
   safety_factor = 4  # Safety factor for design
   # Calculation
   radius = math.sqrt(volume / (math.pi * math.sqrt(2)))  # Optimal radius
   height = (2 * pressure * safety_factor) / (radius * math.sqrt(2))  # Optimal height
   diameter = 2 * radius  # Optimal diameter
   return height, diameter
   # Input values
   volume = 1  # Volume in liters
   pressure = 0.8 * math.pow(10, 6)  # Pressure in Pascals (1 MPa = 10^6 Pascals)
   # Convert volume to cubic meters
   volume = volume / 1000
   # Calculate optimal height and diameter
   optimal_height, optimal_diameter = calculate_optimal_dimensions(volume, pressure)
   # Output
   print(f"The optimal dimensions for a hydrogen tube with a {volume} m^3 capacity and {pressure} Pa pressure are height: {optimal_height} meters and diameter: 
   {optimal_diameter} meters.")

The optimal dimensions for a hydrogen tube with a 1 L capacity and 0.8 mPa pressure are height: 0.305 meters and diameter: 0.12 meters.

Surface Area

   import math
   def calculate_surface_area(height, diameter):
   radius = diameter / 2
   base_area = math.pi * radius**2
   lateral_area = 2 * math.pi * radius * height
   surface_area = 2 * base_area + lateral_area
   return surface_area
   def calculate_cross_sectional_area(diameter):
   radius = diameter / 2
   cross_sectional_area = math.pi * radius**2
   return cross_sectional_area
   # Example usage
   height = 30  # in cm
   diameter = 12  # in cm
   surface_area = calculate_surface_area(height, diameter)
   cross_sectional_area = calculate_cross_sectional_area(diameter)
   print("Surface Area:", surface_area, "cm^2")
   print("Cross-sectional Area:", cross_sectional_area, "cm^2")

Surface Area: 1357.1680263507906 cm^2

Cross-sectional Area: 113.09733552923255 cm^2


Gfrp Prices.jpg

after determining the Surface Area, we can determine the cost for all material that we used, Glass Fiber Reinforced Plastic and Aluminium, when the calculation is done, we get $7.12 or Rp105.848 for GFRP and Rp278.000 for Aluminium, so the total cost is Rp383.484