Raffa Bainan Nunni

From ccitonlinewiki
Revision as of 22:34, 8 June 2023 by Raffa.bainan (talk | contribs) (Batasan Geometris (Geometrical Constraint))
Jump to: navigation, search

Introduction

RaffaK21.jpeg

Assalamualaikum wr. wb.

Perkenalkan, nama saya Raffa Bainan Nunni dengan NPM 2106652556

Saat ini saya sedang menjalani perkuliahan di Universitas Indonesia jurusan Teknik Perkapalan

Resume Pertemuan 1 (26/05/2023)

Mempelajari ilmu apa pun memerlukan kemampuan berpikir yang sadar. Kesadaran diri merupakan kunci dalam membedakan hal-hal yang pantas. Namun, penting untuk diingat bahwa hanya Tuhan yang memiliki kebenaran mutlak. Ilmu sendiri hanyalah pendekatan yang tidak dapat mencapai kebenaran mutlak. Namun demikian, dengan memperluas pemahaman dan pengetahuan kita melalui ilmu, kita dapat mendekati pemahaman yang lebih baik tentang dunia dan diri kita sendiri. Kesadaran diri dan pemikiran yang terbuka memainkan peran penting dalam mengembangkan pandangan dunia yang inklusif dan pemahaman yang lebih mendalam tentang kompleksitas kehidupan. Dalam perjalanan kita memperoleh ilmu, kita dihadapkan pada realitas bahwa sains dan pengetahuan berkembang seiring waktu, dan pemikiran kita harus terus terbuka untuk memperbarui dan memperluas pemahaman kita. Dengan menggabungkan kesadaran diri, pemikiran kritis, dan keterbukaan, kita dapat memperkaya pengetahuan dan memahami kompleksitas dunia di sekitar kita.


Design & Optimization of Pressurized Hydrogen Storage

Objective

Design and Optimization

Specification

Capacity : 1 L
Pressure Level : 8 bar

Limitation

Cost should not exceed Rp. 500 K


Week 1 Progress

Knowing that I need to create something for this project, I consciously think that I need some assistance to provide me with some information about elements and procedures for designing and optimizing hydrogen storage. I chose ChatGPT to provide me assistance in this project because of its vast knowledge, exceptional language skills, and ability to understand and respond to a wide range of topics effectively and efficiently. "Could you offer an in-depth explanation of the elements and procedures involved in the design and optimization of a cost-effective compact pressurized hydrogen storage system?" I used this prompt in ChatGPT.
ChatGPT Response
Certainly! Designing and optimizing a cost-effective compact pressurized hydrogen storage system involves considering several key elements and following specific procedures. Here's an in-depth explanation of the process:
System Requirements: Begin by identifying the specific requirements for the hydrogen storage system, such as the desired storage capacity, operating pressure, weight, dimensions, and safety considerations. These requirements will guide the design process.
Storage Method: Determine the storage method based on the application and requirements. In this case, we'll focus on pressurized hydrogen storage. Other methods include cryogenic storage, solid-state storage, and chemical storage.
Material Selection: Selecting appropriate materials is crucial for safety, cost-effectiveness, and efficiency. The storage vessel should have high strength, be compatible with hydrogen, and possess low permeability to prevent hydrogen leakage. Common materials include high-strength steel, carbon fiber composites, or polymer-based liners with carbon fiber wrapping.
System Design: Develop a detailed design for the storage system, considering factors such as vessel shape, internal volume, structural integrity, valve and fitting placement, thermal management, and pressure relief mechanisms. Computer-aided design (CAD) software can assist in creating accurate models.
Safety Measures: Implement safety features to prevent accidents and ensure reliable operation. This may include pressure relief devices, burst disks, pressure sensors, and fire suppression systems. Adhering to relevant safety standards, such as ISO 16111 or ASME Boiler and Pressure Vessel Code, is crucial.
Optimization Techniques: Optimize the design for cost-effectiveness and compactness. This can involve various techniques, including structural analysis, computational fluid dynamics (CFD) simulations, and optimization algorithms. These methods help identify the most efficient shapes, materials, and manufacturing techniques to reduce cost and maximize storage capacity.
Manufacturing Process: Choose an appropriate manufacturing process that balances cost, quality, and scalability. Common methods for hydrogen storage vessels include filament winding for composite materials and deep-drawing or forging for metal containers. Continually improve the manufacturing process to reduce costs and enhance reliability.
Performance Testing: Conduct thorough performance tests to ensure the system meets the desired specifications and safety requirements. This may involve pressure cycling, leak testing, burst tests, and other relevant evaluations. Real-world conditions should be simulated as accurately as possible.
Regulatory Compliance: Ensure compliance with relevant regulations and standards for hydrogen storage systems. This may include certifications from regulatory bodies such as the International Organization for Standardization (ISO), the U.S. Department of Transportation (DOT), or local regulatory agencies. Compliance is essential for market acceptance and safety.
Lifecycle Considerations: Evaluate the lifecycle impact of the storage system, considering factors such as material sourcing, manufacturing energy consumption, maintenance requirements, and end-of-life considerations. Aim for sustainability and minimize environmental impact.
Continuous Improvement: As new technologies and materials emerge, continue to monitor advancements in hydrogen storage systems. Look for opportunities to enhance the system's efficiency, reduce costs, and improve safety through ongoing research and development efforts.

Final Report of Design & Optimization of Pressurized Hydrogen Storage

Sebagai mahasiswa Teknik yang sedang belajar untuk menjadi insinyur yang berkualitas, penting bagi kita untuk melakukan pendekatan yang komprehensif terhadap semua faktor yang mempengaruhi desain komponen, terutama efisiensi dan optimisasi yang sangat penting. Dalam kelas Metode Numerik, kami diberi tugas untuk mendesain dan mengoptimalkan penyimpanan hidrogen bertekanan. Melalui tugas ini, kami belajar untuk berpikir seperti seorang insinyur dan juga meningkatkan kesadaran kami terhadap faktor-faktor yang terlibat.

Ada tiga batasan yang harus kami perhatikan dalam mengoptimalkan desain tangki hidrogen ini, yaitu batasan geometris, batasan kekuatan material, dan batasan biaya. Setelah diskusi dengan teman-teman kami dalam kelas, kami memutuskan untuk menggunakan baja tahan karat austenitik AISI 316 sebagai material untuk tangki hidrogen ini. Baja tahan karat austenitik telah dipilih oleh banyak pabrikan penyimpanan hidrogen industri, karena ketersediaannya, daya tahan, kekuatan, kemampuan pemesinan, dan kompatibilitasnya dengan gas hidrogen (tidak bereaksi dengan hidrogen).

Dengan memilih austenitic stainless steel, kami yakin bahwa material ini telah terbukti dan dapat diandalkan untuk tugas penyimpanan hidrogen. Selain itu, kami juga mengakui bahwa baja tahan karat austenitik ini memiliki sifat yang memenuhi persyaratan desain tangki hidrogen, termasuk ketahanan terhadap tekanan internal, perlindungan terhadap kebocoran hidrogen, dan kompatibilitas dengan lingkungan hidrogen.

Batasan Geometris (Geometrical Constraint)

Geometri Dasar

Saya menghitung geometri dasar yang optimal menggunakan program python dibawah:

import math
from scipy.optimize import minimize

def surface_area_objective(x):
    radius = x[0]
    height = x[1]

    surface_area_cm2 = 2 * math.pi * radius * (radius + height)

    return surface_area_cm2

def calculate_smallest_surface_area(volume):
    volume_cm3 = volume * 1000

    x0 = [1, 1]

    volume_constraint = {'type': 'eq', 'fun': lambda x: math.pi * x[0]**2 * x[1] - volume_cm3}

    optimization_result = minimize(surface_area_objective, x0, constraints=[volume_constraint])

    radius = optimization_result.x[0]
    height = optimization_result.x[1]
    surface_area = optimization_result.fun

    return radius, height, surface_area

radius, height, surface_area = calculate_smallest_surface_area(1)

print("Dimensions of the hydrogen tank with the smallest surface area:")
print("Radius: {:.2f} cm".format(radius))
print("Height: {:.2f} cm".format(height))
print("Surface Area: {:.2f} cm²".format(surface_area))
Hasil running program
Berdasarkan hasil running, dapat diketahui bahwa dengan luas area permukaan seminimal mungkin, ukuran tangki tabung yang optimal adalah dengan rasio tinggi:radius = 2:1, dalam hal ini tinggi tabung adalah 10.84 cm dan radiusnya adalah 5.42 cm. Dengan ukuran ini, luas area permukaan yang diperoleh adalah 553.58 cm²