Difference between revisions of "Raden Muhammad Naufal Faris Herviadi (Metnum)"

From ccitonlinewiki
Jump to: navigation, search
(Cara Merancang Hydrogen Storage yang Optimal)
Line 67: Line 67:
  
 
Material yang digunakan untuk hydrogen storage ini adalah steel carbon ASTM A36. Yield strength dari material ini adalah 248 MPa
 
Material yang digunakan untuk hydrogen storage ini adalah steel carbon ASTM A36. Yield strength dari material ini adalah 248 MPa
 
Allowable Stress = 2/3 x  Yield Stregth = 2/3 x 248 = 165,3 MPa
 
  
 
[[File:Cylinder_volume.png|250px]]
 
[[File:Cylinder_volume.png|250px]]
Line 77: Line 75:
  
 
h = 12,73 cm
 
h = 12,73 cm
 +
 +
 +
'''Step 5: Mempertimbangkan keamanan'''
 +
 +
''Allowable Stress (AS)''
 +
AS = 2/3 x  Yield Stregth = 2/3 x 248 = 165,3 MPa
 +
 +
''Minimum Thickness (t)''
 +
t = P x R/(S x E - 0,6 x P) = 116 x 3,93 / (24000 x 0,60 - 0,6 x 116)
 +
t = 0,07 inch atau 1,8 mm

Revision as of 22:57, 12 June 2023

RadenMa.jpg

Nama Lengkap: Raden Muhammad Naufal Faris Herviadi

NPM: 2106703563

Cara Merancang Hydrogen Storage yang Optimal


Merancang sistem penyimpanan hidrogen yang optimal melibatkan beberapa faktor yang perlu dipertimbangkan. Berikut adalah beberapa langkah umum yang dapat Anda ikuti dalam merancang hydrogen storage yang optimal:

1. Tentukan Kebutuhan Penggunaan Hidrogen: Pertama-tama, tentukan jumlah hidrogen yang perlu disimpan, kecepatan pengisian dan pengosongan yang diinginkan, serta tekanan dan suhu operasional yang direncanakan. Ini akan membantu Anda memilih jenis sistem penyimpanan yang sesuai.

2. Pilih Metode Penyimpanan: Ada beberapa metode umum yang digunakan untuk menyimpan hidrogen, termasuk kompresi gas, penyimpanan dalam bentuk cair, adsorpsi pada bahan penyerap, dan penyimpanan dalam logam hidrida. Pilih metode yang sesuai dengan kebutuhan dan ketersediaan sumber daya.

3. Evaluasi Tekanan dan Temperatur Kerja: Tekanan dan temperatur penyimpanan hidrogen dapat berpengaruh pada kepadatan energi dan kapasitas penyimpanan. Pastikan untuk memilih tekanan dan temperatur yang optimal untuk sistem penyimpanan Anda.

4. Pilih Material dan Desain Wadah: Material yang digunakan dalam wadah penyimpanan harus memiliki kemampuan yang baik untuk menahan tekanan hidrogen dan tahan terhadap korosi. Beberapa material yang umum digunakan termasuk serat karbon, logam, dan polimer yang diperkuat serat.

5. Pertimbangkan Keamanan: Pastikan sistem penyimpanan yang Anda rancang aman untuk digunakan. Pertimbangkan faktor-faktor seperti kebocoran hidrogen, kemungkinan kebakaran atau ledakan, dan langkah-langkah keselamatan yang perlu diimplementasikan.

6. Uji dan Evaluasi: Setelah merancang sistem penyimpanan, lakukan uji coba dan evaluasi untuk memastikan bahwa sistem berfungsi dengan baik dan memenuhi kriteria yang ditetapkan sebelumnya. Lakukan pengujian tekanan, kebocoran, dan performa secara menyeluruh.

7. Optimalkan Kinerja: Jika hasil uji coba tidak sesuai dengan harapan, identifikasi faktor-faktor yang dapat dioptimalkan. Misalnya, Anda dapat mempertimbangkan modifikasi pada material, desain wadah, atau sistem pengisian dan pengosongan.

8. Pertimbangkan Aspek Ekonomi: Selain performa dan keamanan, pertimbangkan juga aspek ekonomi dalam merancang sistem penyimpanan hidrogen. Bandingkan biaya pengembangan, produksi, dan pemeliharaan dengan manfaat energi yang diperoleh untuk memastikan efisiensi dan keberlanjutan sistem.

Merancang sistem penyimpanan hidrogen yang optimal membutuhkan pemahaman yang mendalam tentang prinsip-prinsip fisika, kimia, dan teknik yang terlibat dalam penyimpanan hidrogen. Disarankan untuk bekerja dengan tim ahli yang berpengalaman dalam bidang ini untuk memastikan keberhasilan dan keselamatan proyek tersebut.

Merancang Hydrogen Storage


Step 1: Menentukan kebutuhan penggunaan hidrogen

Hydrogen storage yang dirancang ditujukan untuk penggunaan pada kendaraan bermotor roda dua. Hydrogen storage juga memiliki persayaratan sebagai berikut:

1. Kapasitas sebesar 1 liter

2. Cost maksimal Rp. 500.000,-


Step 2: Menentukan metode penyimpanan

Untuk motor roda dua dengan persyaratan tertentu, metode penyimpanan hidrogen yang paling cocok adalah menggunakan tangki tekanan tinggi dengan kompresi gas. Metode ini umum digunakan dalam kendaraan hidrogen dan memiliki beberapa keuntungan yang sesuai dengan kebutuhan motor roda dua:

1. Kompak dan Ringan: Tangki tekanan tinggi dapat dirancang dalam ukuran yang kompak dan ringan, sehingga sesuai dengan batasan ruang dan bobot pada motor roda dua.

2. Efisiensi Energi: Penyimpanan hidrogen dalam bentuk gas terkompresi memiliki efisiensi energi yang baik dalam hal pengisian dan pengosongan. Hal ini memungkinkan kendaraan untuk menggunakan hidrogen dengan efisien dan memperpanjang jangkauan perjalanan.

3. Kecepatan Pengisian dan Pengosongan: Metode kompresi gas memungkinkan pengisian dan pengosongan hidrogen dengan cepat, sehingga kendaraan dapat diisi ulang dengan mudah dan meminimalkan waktu tunggu.

4. Keselamatan: Tangki tekanan tinggi dapat dirancang dengan sistem keamanan yang baik, seperti katup pelepas tekanan yang diatur dengan baik, untuk meminimalkan risiko kebocoran atau kejadian yang tidak diinginkan.

5. Ketersediaan Infrastruktur: Infrastruktur pengisian hidrogen dengan metode kompresi gas semakin berkembang di beberapa wilayah, sehingga kemungkinan untuk menemukan stasiun pengisian hidrogen dapat menjadi lebih mudah.


Step 3: Menentukan tekanan dan temperatur kerja

Hydorgen Phase Diagram 1 (Naufal).jpg

Berdasarkan diagram di atas, hidrogen berada dalam fase gas pada tekanan 8 bar dan temperatur 25°C


Step 4: Memilih Material dan Desain Wadah

Material yang digunakan untuk hydrogen storage ini adalah steel carbon ASTM A36. Yield strength dari material ini adalah 248 MPa

Cylinder volume.png

Gambar di atas menunjukkan persamaan volume silinder. Jika diameter tangki adalah 10 cm, maka bisa diperoleh tinggi tangki (h):

h = 1.000/(3,14 x 5 x 5)

h = 12,73 cm


Step 5: Mempertimbangkan keamanan

Allowable Stress (AS) AS = 2/3 x Yield Stregth = 2/3 x 248 = 165,3 MPa

Minimum Thickness (t) t = P x R/(S x E - 0,6 x P) = 116 x 3,93 / (24000 x 0,60 - 0,6 x 116) t = 0,07 inch atau 1,8 mm