Difference between revisions of "Muhammad Bagir Alaydrus"

From ccitonlinewiki
Jump to: navigation, search
(Pertemuan 10)
(Pertemuan 10)
Line 114: Line 114:
 
   
 
   
 
Dimana:  
 
Dimana:  
 
+
Hf  = head mayor (m)
Hf  = head mayor (m)
 
 
  L  = panjang pipa (m)
 
  L  = panjang pipa (m)
 
  D  = diameter pipa (m)
 
  D  = diameter pipa (m)
Line 127: Line 126:
  
 
Dimana :  
 
Dimana :  
 
+
Hm = head minor (m)  
Hm = head minor (m)  
+
v    = kecepatan (m/s)  
v    = kecepatan (m/s)  
+
g    = gravitasi bumi (m/s2)
g    = gravitasi bumi (m/s2)
+
k    = koefisien kerugian pada fiting
k    = koefisien kerugian pada fiting
 
  
 
Bentuk-bentuk kerugian energi pada aliran fluida antara lain dijumpai pada aliran dalam pipa. Kerugian-kerugian tersebut diakibatkan oleh adanya gesekan dengan dinding, perubahan luas penampang, sambungan, katup-katup, belokan pipa, percabangan pipa dan kerugian-kerugian khusus lainnya. Fungsi kita mengetahui kehilangan atau kerugian energi dalam suatu sistem atau instalasi perpipaan yang memanfaatkan fluida mengalir sebagai media, efisiensi penggunaan energi dapat ditingkatkan sehingga diperoleh keuntungan yang maksimal. Salah satu bagian dari instalasi perpipaan yang dapat menyebabkan kerugian-kerugian adalah gesekan pada dinding pipa dan sambungan belokan pipa. Dimana pada kali ini kita akan membahas kerugian akibat sambungan belokan pipa. Besarnya kerugian pada sambungan belokan pipa tersebut dipengaruhi oleh beberapa factor, seperti: diameter, debit, viskositas, dan sudut pada sambungan belokan pipa tersebut
 
Bentuk-bentuk kerugian energi pada aliran fluida antara lain dijumpai pada aliran dalam pipa. Kerugian-kerugian tersebut diakibatkan oleh adanya gesekan dengan dinding, perubahan luas penampang, sambungan, katup-katup, belokan pipa, percabangan pipa dan kerugian-kerugian khusus lainnya. Fungsi kita mengetahui kehilangan atau kerugian energi dalam suatu sistem atau instalasi perpipaan yang memanfaatkan fluida mengalir sebagai media, efisiensi penggunaan energi dapat ditingkatkan sehingga diperoleh keuntungan yang maksimal. Salah satu bagian dari instalasi perpipaan yang dapat menyebabkan kerugian-kerugian adalah gesekan pada dinding pipa dan sambungan belokan pipa. Dimana pada kali ini kita akan membahas kerugian akibat sambungan belokan pipa. Besarnya kerugian pada sambungan belokan pipa tersebut dipengaruhi oleh beberapa factor, seperti: diameter, debit, viskositas, dan sudut pada sambungan belokan pipa tersebut
  
 
Kualitas pipa dan fitting kecuali di tentukan berdasarkan kualitas fisik berupa tampilan warna, dimensi, sistim koneksi (ulir atau flange) dan lain sebagainya ditentukan pula oleh head losses apabila dialiri fluida. Semakin besar head losses semakin berkurang kualitas pipa dan fitting tersebut. Kualitas fisik dapat mudah dikenali oleh konsumen, namun head losses harus dilakukan penelitian laboratoris (Edi Suhariono: 2008). Dimana seperti kita ketahui Head Losses adalah penjumlahan dari Mayor dan Minor Losses.
 
Kualitas pipa dan fitting kecuali di tentukan berdasarkan kualitas fisik berupa tampilan warna, dimensi, sistim koneksi (ulir atau flange) dan lain sebagainya ditentukan pula oleh head losses apabila dialiri fluida. Semakin besar head losses semakin berkurang kualitas pipa dan fitting tersebut. Kualitas fisik dapat mudah dikenali oleh konsumen, namun head losses harus dilakukan penelitian laboratoris (Edi Suhariono: 2008). Dimana seperti kita ketahui Head Losses adalah penjumlahan dari Mayor dan Minor Losses.

Revision as of 00:29, 5 May 2020

BIODATA

alt text

Nama : Muhammad Bagir Alaydrus

NPM : 1806233373

TTL : Jakarta, 8 Oktober 2000

Jurusan : Teknik Mesin


Pertemuan 1 MekFlu

Pada Kelas pertama hari ini membahas tentang aliran viscous. Dimana aliran viscous adalah aliran ketika kekentalan suatu fluida diperhitungkan. Dimana viskositas atau kekentalan ini menyebabkan adanya tegangan geser yang membuat profil kecepatan berbeda.Aliran Viscous ada 2 yaitu Laminar dan Turbulen, Dimana Aliran laminar mempunyai Reynold Number < 2100 dan Re > 4000 untuk aliran turbulen. Kemudian kami diajari cara untuk memakai CFDSOF dimana kasus yang tadi diberikan pada aliran Laminar dan menghasilkan hasil sebagai berikut :

Screenshot (2).png

Screenshot (3).png


PR 1 MekFlu

Pertanyaan:

1. Apa itu entrance region, entrance length dan fully developed flow? 2. Apa pengaruh viskositas terhadap pressure drop? Dan tentukan rumusnya?

Jawaban

1.Entrance Region adalah suatu wilayah atau daerah yang berada didekat dengan tempat masuknya fluida ke pipa. Atau bagian awal dari suatu empat aliran yang masuk dari suatu sumber. Contohnya Furnace.

Entrance Length adalah panjang suatu aliran dari awal masuk pipa hingga mencapai kondisi dimana fully developed flow atau aliran yang berkembang sempurna.


Sumber: Book of “Fundamental fluid Dynamics By Munson" Fully Develeoped Flowadalah kondisi dimana profil kecepatan fluida akan menjadi tetap besarnya.

Flow di Pipa.PNG

2.Pressure Dropdrop didefinisikan sebagai penurunan tekanan yang terjadi karena adanya gesekan pada fluida yang mengalir. Pressure drop akan semakin tinggi dan berbanding lurus dengan gesekan pada fluida. Sedangkan besarnya gesekan dipengaruhi oleh viskositas dari suatu fluida.

Pressure Drop Pipa.PNG

Rumus Pressure Drop.PNG


Pertemuan 2

Pada pertemuan kedua dijelaskan dalam pengaplikasian mekanika fluida yang dijelaskan oleh bapak .Ada 3 dasaran yang harus di ketahui dalam mekanika fluida.Ketiga dasaran konservasi tersebut adalah sebagai berikut.

1. Konservasi Massa

Massa pada aliran harus 0 tidak ada yang hilang atau diciptakan

           dM/dt = 0

2. Konservasi Momentum

           m dV/dt = ∑ F

3. Konservasi Energi

Apabila sistem energi mengalami perubahan terhadap waktu dan jarak maka perubahan energi akan diikuti perubahan kerja dan aliran panas

           dE/dt = W + Q

Kemudian juga dibahas tentang entrance region, fully developed flow, pressure drop dan tekanan-tekanan.

1. Entrance region; jarak fluida dari saluran masuk hingga profil aliran tidak berubah.

2. Fully developed flow ; daerah setelah aliran masuk saat kecepatannya tetap.

3. Pressure Drop ; perbedaan tekanan (dalam hal ini tekanan dinamik).

4. Tekanan ; pada dasarnya adalah energi, sedangkan energi tidak dapat hilang atau dibentuk, dalam artian pressure drop sendiri bukanlah perbedaan tekanan yang hilang, namun energi dalam bentuk tekanan tersebut berubah menjadi energi panas dikarenakan gesekan dengan dinding aliran.

Berikut ialah soal yang diberikan : Soal aliran bagir.jpeg

Pertemuan 3

Pada pertemuan kali ini membahas tentang goverment equation,goverment equation merupakan persamaan yang mengatur kegiatan suatu fluida. Dimana persamaannya yaitu

Pertemuan 3 bagir.png

contohnya yaitu pada persamaan

                         Re= inertia force / friction force 

maka dapat dikatakan semakin besar bilangan Reyold maka semakin besar inersia dan semakin kecil viskos nya. Oleh karna itu kita dapat mengetahui bahwa pada suatu aliran yang bersifat inviscid atau aliran pada enterance region viskos dapat diabaikan. sementara pada keadaan aliran fully development peranan gaya viskos lebih berpengaruh.

Semakin tinggi Reynolds number maka gaya inersia semakin lebih dominan dibandingkan gaya viskosnya dan semakin rendah nilai Reynolds number maka efek viskos semakin lebih dominan dibandingkan gaya inersianya. Sehingga perbedaan nilai viskositas fluida akan mempengaruhi Reynolds number. Semakin tinggi nilai viskositas maka pembentukan fully developed region akan semakin cepat dan entrance region terlihat lebih pendek dan berlaku sebaliknya. Kemudian semakin tinggi kecepatan fluida tersebut maka pembentukan fully developed region akan semakin lambat dan terlihat lebih pendek, dan berlaku sebaliknya

Dan juga bang edo mengajarkan bagaiman membuat geometri pipa di solid work dan memasukkan nya ke CFDSOF untuk di simulasikan.

Pertemuan 4

Pertemuan 5

Pertemuan 6

Pertemuan 7

Pertemuan 8

Pertemuan 9

Pertemuan 10

Tugas Besar

Judul : Pengaruh Variasi Sudut Sambungan Belokan sebesar 30Odan 45O Terhadap Major dan Minor Losses Aliran Pipa

Kerugian mayor adalah kehilangan tekanan akibat gesekan aliran fluida pada sistem aliran dengan luas penampang tetap atau konstan. Aliran fluida yang melalui pipa akan selalu mengalami kerugian head. Hal ini disebabkan oleh gesekan yang terjadi antara fluida dengan dinding pipa atau perubahan kecepatan yang dialami oleh fluida. Kerugian head akibat dari gesekan dapat dihitung dengan menggunakan Persamaan Darcy – Weisbach yaitu:

                         Hf = f.L.v2/ D.2g

Dimana:

Hf  = head mayor (m)
L   = panjang pipa (m)
D  = diameter pipa (m)
v   = kecepatan (m/s) 
g   = gravitasi bumi (m/s2)
f    = factor gesek (didapat dari diagram mody)

Sementara Kerugian minor adalah kehilangan tekanan akibat gesekan yang terjadi pada katup-katup, sambungan Tee, sambungan belokan, dan pada luas penampang yang tidak konstan. Pada aliran yang melewati belokan dan katup head loss minor yang terjadi dapat dihitung dengan rumusan Darcy – Weisbach (White, 1988) yaitu:

                          Hm = k.v2/ 2g

Dimana :

Hm = head minor (m) 
v    = kecepatan (m/s) 
g    = gravitasi bumi (m/s2)
k    = koefisien kerugian pada fiting

Bentuk-bentuk kerugian energi pada aliran fluida antara lain dijumpai pada aliran dalam pipa. Kerugian-kerugian tersebut diakibatkan oleh adanya gesekan dengan dinding, perubahan luas penampang, sambungan, katup-katup, belokan pipa, percabangan pipa dan kerugian-kerugian khusus lainnya. Fungsi kita mengetahui kehilangan atau kerugian energi dalam suatu sistem atau instalasi perpipaan yang memanfaatkan fluida mengalir sebagai media, efisiensi penggunaan energi dapat ditingkatkan sehingga diperoleh keuntungan yang maksimal. Salah satu bagian dari instalasi perpipaan yang dapat menyebabkan kerugian-kerugian adalah gesekan pada dinding pipa dan sambungan belokan pipa. Dimana pada kali ini kita akan membahas kerugian akibat sambungan belokan pipa. Besarnya kerugian pada sambungan belokan pipa tersebut dipengaruhi oleh beberapa factor, seperti: diameter, debit, viskositas, dan sudut pada sambungan belokan pipa tersebut

Kualitas pipa dan fitting kecuali di tentukan berdasarkan kualitas fisik berupa tampilan warna, dimensi, sistim koneksi (ulir atau flange) dan lain sebagainya ditentukan pula oleh head losses apabila dialiri fluida. Semakin besar head losses semakin berkurang kualitas pipa dan fitting tersebut. Kualitas fisik dapat mudah dikenali oleh konsumen, namun head losses harus dilakukan penelitian laboratoris (Edi Suhariono: 2008). Dimana seperti kita ketahui Head Losses adalah penjumlahan dari Mayor dan Minor Losses.