Difference between revisions of "Amar Falah Riyanto"

From ccitonlinewiki
Jump to: navigation, search
(Hydrogen Storage System: Research and Preliminary Design)
(Hydrogen Storage System: Research and Preliminary Design)
Line 60: Line 60:
 
Pada pekan pertama, saya sudah membuat rancangan sistem yang terdiri atas:
 
Pada pekan pertama, saya sudah membuat rancangan sistem yang terdiri atas:
  
1. Tabung dengan kapasitas 1L
+
''1. Tabung dengan kapasitas 1L''
  
 
Ini adalah komponen utama tempat hidrogen disimpan. Seperti yang telah disebutkan sebelumnya, material dari tangki harus bisa menahan tekanan dan sifat reaktif hidrogen. Beberapa tangki modern dibuat dari komposit serat karbon, yang memiliki kekuatan tinggi dan berat yang ringan. Tangki juga harus dilengkapi dengan katup untuk memastikan keamanan.
 
Ini adalah komponen utama tempat hidrogen disimpan. Seperti yang telah disebutkan sebelumnya, material dari tangki harus bisa menahan tekanan dan sifat reaktif hidrogen. Beberapa tangki modern dibuat dari komposit serat karbon, yang memiliki kekuatan tinggi dan berat yang ringan. Tangki juga harus dilengkapi dengan katup untuk memastikan keamanan.
Line 70: Line 70:
  
  
2. Flow Controller
+
''2. Flow Controller''
  
 
Komponen yang menggunakan PID controller ini merupakan komponen yang mengatur seberapa banyak hidrogen cair yang dialirkan. Pada pekan pertama ini, saya telah membuat design dan model simulink yang dapat digunakan untuk optimasi dan pengendalian sistem
 
Komponen yang menggunakan PID controller ini merupakan komponen yang mengatur seberapa banyak hidrogen cair yang dialirkan. Pada pekan pertama ini, saya telah membuat design dan model simulink yang dapat digunakan untuk optimasi dan pengendalian sistem

Revision as of 07:45, 29 May 2023

Introduction

Amar Falah.png

Halo semua, nama saya Amar, mahasiswa kelas Metode Numerik-03

Fullname: Amar Falah Riyanto

NPM: 2106732891


Hydrogen Storage System: Research and Preliminary Design

Background

Bahan bakar hidrogen adalah pembawa energi, yang berarti menyimpan dan mengantarkan energi dalam bentuk yang mudah digunakan, sama seperti listrik. Ketika bahan bakar hidrogen dikonsumsi dalam sel bahan bakar, ia hanya menghasilkan air, listrik, dan panas - tidak ada emisi berbahaya atau gas rumah kaca yang terlibat dalam proses ini. Mekanisme energi bersih ini menjadikan hidrogen sebagai sumber energi yang sangat menarik seiring dunia berusaha mengurangi emisi karbon dan melawan perubahan iklim.

Namun, pemanfaatan hidrogen sebagai sumber bahan bakar tidak tanpa tantangan. Gas hidrogen sangat mudah terbakar, membutuhkan tekanan tinggi untuk penyimpanan, dan sulit untuk diangkut. Mengatasi hambatan ini membutuhkan solusi penyimpanan yang kokoh, aman, dan efisien - sebuah pencarian yang ditujukan oleh peneliti, insinyur, dan ilmuwan di seluruh dunia.

Seiring kita mendorong lebih jauh ke masa depan di mana sumber energi terbarukan dan berkelanjutan menjadi norma, bahan bakar hidrogen menonjol sebagai janji harapan. Ini bukan hanya pertanyaan "apakah", tetapi "kapan" bahan bakar hidrogen akan menjadi batu penjuru sistem energi global. Dalam konteks ini, desain dan optimisasi sistem penyimpanan hidrogen bukan hanya pencarian teknologi, tetapi langkah penting menuju masa depan yang lebih bersih, lebih hijau, dan berkelanjutan.


Preliminary Design

Rancangan sistem penyimpanan hidrogen dengan kapasitas 1 liter yang mampu menahan tekanan 8 bar membutuhkan pertimbangan lebih rinci mengenai standar internasional dan perhitungan yang lebih spesifik. Berikut ini beberapa hal yang perlu dipertimbangkan:

1. Material Penyimpanan:

Ada berbagai material yang bisa digunakan untuk tangki penyimpanan hidrogen, namun standar internasional seperti ISO 11119-2 dan ISO 11119-3 biasanya mengarah pada penggunaan komposit seperti karbon dan serat kaca, atau baja paduan tinggi seperti AISI 316L untuk tangki bertekanan tinggi.

2. Desain Tangki:

Untuk tangki berkapasitas 1 liter, kita perlu memastikan desain tangki mematuhi standar seperti ASME BPVC Section VIII yang menentukan prinsip-prinsip desain tangki bertekanan. Desain tangki harus mempertimbangkan faktor keamanan terhadap kegagalan, biasanya minimal 2.0 untuk tangki bertekanan. Untuk tangki silinder, tebal dinding, t, dapat dihitung menggunakan rumus berikut:

t = P x r / (σ - P)

Dimana:

   P adalah tekanan dalam tangki (8 bar atau sekitar 800.000 Pascal)
   r adalah jari-jari tangki
   σ adalah tegangan izin material tangki.

3. Keamanan:

Tangki harus dilengkapi dengan katup pengaman tekanan untuk melindungi terhadap kondisi overpressure. Standar seperti ISO 15500-13 memberikan panduan tentang persyaratan keamanan untuk komponen kendaraan bahan bakar hidrogen.

4. Inspeksi dan Pengujian:

Setelah tangki selesai dirakit, harus dilakukan inspeksi dan pengujian untuk memastikan bahwa tidak ada kebocoran dan tangki mampu menahan tekanan operasi yang ditentukan. Standar seperti ISO 16111 merinci prosedur pengujian yang diperlukan.

5. Efisiensi Penyimpanan:

Pada tekanan 8 bar, satu liter volume tangki akan mampu menyimpan sekitar 0,036 gram hidrogen. Efisiensi penyimpanan dapat ditingkatkan dengan peningkatan tekanan atau dengan penggunaan teknologi seperti penyimpanan hidrid logam, meski hal ini akan menambah kompleksitas dan biaya.


1st Week Progress

Pada pekan pertama, saya sudah membuat rancangan sistem yang terdiri atas:

1. Tabung dengan kapasitas 1L

Ini adalah komponen utama tempat hidrogen disimpan. Seperti yang telah disebutkan sebelumnya, material dari tangki harus bisa menahan tekanan dan sifat reaktif hidrogen. Beberapa tangki modern dibuat dari komposit serat karbon, yang memiliki kekuatan tinggi dan berat yang ringan. Tangki juga harus dilengkapi dengan katup untuk memastikan keamanan. Oleh karena itu, saya menggunakan design dari tabung hydrogen yang sudah ada sebagai referensi design

Referensi Design
Design Tangki Hidrogen


2. Flow Controller

Komponen yang menggunakan PID controller ini merupakan komponen yang mengatur seberapa banyak hidrogen cair yang dialirkan. Pada pekan pertama ini, saya telah membuat design dan model simulink yang dapat digunakan untuk optimasi dan pengendalian sistem

Design Flow Controller
System Modelling on Simulink