Faza Abiyya Rinaldi Haryadi

From ccitonlinewiki
Jump to: navigation, search

Introduction

Saya Faza Abiyya dari Teknik Perkapalan FTUI 2021 dengan NPM 2106705051

Pertemuan 26/05/2023

Pada pertemuan pertama ini saya dapat memahami bahwa metode numerik merupakan suatu metode penyelesaian dimana untuk menyelesaikan suatu masalah menggunakan pendekatan pendekatan. Kesadaran diri dan pemikiran yang terbuka memainkan peran penting dalam kehidupan kita. Pak DAI menjelaskan sekilas tentang penugasan kepada mahasiswa untuk mendesain tabung hydrogen 8 bar dengan batasan berupa produksi dari tabung tersebut harus kurang dari Rp500.000 . tugas ini diberikan karena mengingat energy hydrogen ini di masa depan diharapkan bisa menjadi solusi

Design & Optimization of Pressurized Hydrogen Storage

Objective : Design and Optimization Of Pressurized Hydrogen Storage

Spesification :

Capacity  : 1 Litres

Pressure Level  : 8 bar

Limitation : Cost should not exceed Rp.500.000


Week 1 progress :

Before we dive deeper into the design & optimization phases, we must consciously understand the factors and processes involved in designing and optimizing the hydrogen storage first.

Select Tank Material

Hydrogen tanks are typically made from materials that are strong and capable of withstanding high pressures. Common materials used include alloy steel or carbon fiber reinforced with epoxy resin. Make sure the selected material has sufficient resistance to hydrogen corrosion.

Determine Working Pressure

Hydrogen can be stored in tanks either in compressed form or as a liquid. For compression storage, determine the working pressure based on your application needs. Higher working pressures require tanks with thicker and stronger walls.

Design Tank Structure

Hydrogen tanks usually have a cylindrical design with end caps. In the design, consider structural strength, tank mass, and thermal performance to avoid leaks or structural failures.

Consider Safety Systems

Safety is a critical aspect of hydrogen tank design. Ensure that the tank is equipped with pressure relief valves, and other necessary safety features to reduce the risk of hazards or accidents.

Cost Optimization

Minimize costs by considering factors such as material selection, manufacturing processes, and economies of scale because in this case the maximum cost to spend is Rp 500.000. Explore different manufacturing techniques, such as filament winding or automated fiber placement, to optimize production costs.

Test and Validation

Once the design is complete, conduct testing and validation to ensure the tank meets the required standards and safety regulations. Pressure tests, leak tests, and strength tests are some examples of tests that can be performed.

Final Report Hydrogen Tank

Presentasi


Dimension Optimization

Dimension Optimization calculation for hyodrogen storage space

def objective_function(x):
   radius = x[0]
   height = x[1]
   surface_area = calculate_cylinder_surface_area(radius, height)
   cost = calculate_cylinder_cost(surface_area)
   return cost
def calculate_cylinder_surface_area(radius, height):
   lateral_area = 2 * math.pi * radius * height
   base_area = math.pi * radius**2
   total_area = lateral_area + 2 * base_area
   return total_area
def calculate_cylinder_cost(surface_area):
   # Menghitung biaya berdasarkan luas permukaan tabung
   # Anda dapat menyesuaikan fungsi ini dengan estimasi biaya bahan dan produksi yang relevan
   return surface_area * cost_per_unit_area
#Mendefinisikan batasan untuk radius dan tinggi tabung
def constraint(x):
   radius = x[0]
   height = x[1]
   volume = math.pi * radius**2 * height
   return volume - 1  # Volume harus sama dengan 1L (1000 cm^3)
#Mendefinisikan fungsi untuk mencetak solusi terbaik
def print_solution(x):
   radius = x[0]
   height = x[1]
   surface_area = calculate_cylinder_surface_area(radius, height)
   cost = calculate_cylinder_cost(surface_area)
   print("Optimization Result:")
   print("Radius:", radius)
   print("Height:", height)
   print("Surface Area:", surface_area)
   print("Cost:", cost)
# Menentukan batasan dan inisialisasi nilai awal
x0 = [1, 1]  # Nilai awal radius dan tinggi tabung
volume_constraint = {'type': 'eq', 'fun': constraint}  # Batasan volume harus sama dengan 1L (1000 cm^3)
bounds = [(0, None), (0, None)]  # Batasan non-negatif untuk radius dan tinggi
# Melakukan optimisasi menggunakan metode SLSQPresult = minimize(objective_function, x0, method='SLSQP', bounds=bounds, 
constraints=volume_constraint)
# Ekstrak variabel hasil yang dioptimalkan
  radius_optimasi, tinggi_optimasi = hasil.x
# Hitung luas permukaan yang dioptimalkan
  luas_permukaan_optimal = hitungLuasPermukaan([radius_optimasi, tinggi_optimasi])
# Tampilkan hasil
  print('Jari-jari teroptimasi:', radius_optimasi, 'cm')
  print('Tinggi teroptimasi:', tinggi_optimasi, 'cm')
  print('Luas Permukaan teroptimasi:', luas_permukaan_optimasi, 'cm^2')

Output Hitungan

   Optimal Radius: 5.2311587 cm
   Optimal Height: 9.522345 cm
   Optimal Surface Area: 484.67733 cm^2

Thickness Calculation

Menghitung Ketebalan yang dibutuhkan

  1. Definisikan fungsi untuk menghitung tegangan cincin (hoop stress)
def calculate_hoop_stress(thickness, inner_diameter, outer_diameter, pressure):
   inner_radius = inner_diameter / 2
   outer_radius = outer_diameter / 2
   hoop_stress = (pressure * (outer_radius**2 - inner_radius**2)) / (thickness * (outer_radius - inner_radius))
   return hoop_stress
   # Definisikan parameter dan batasan
   target_stress = 206000000  # Target tegangan cincin yang ingin dicapai
   min_thickness = 0.005 # Batasan tebal minimum
   max_thickness = 0.030 # Batasan tebal maksimum
# Inisialisasi tebal awal
thickness = 0.005
# Proses iterasi untuk mengoptimalkan tebal plate
while True:
   # Hitung tegangan cincin berdasarkan tebal saat ini
   hoop_stress = calculate_hoop_stress(thickness, inner_diameter, outer_diameter, pressure)
   # Periksa apakah tegangan cincin sudah mencapai target
   if hoop_stress >= target_stress:
       break  # Keluar dari iterasi jika tegangan cincin sudah mencapai target
   # Sesuaikan tebal plate berdasarkan perbandingan tegangan cincin dengan target
   thickness += 0.05
   # Periksa batasan tebal minimum dan tebal maksimum
   if thickness < min_thickness:
       thickness = min_thickness
   elif thickness > max_thickness:
       thickness = max_thickness
# Cetak tebal plate yang dihasilkan
print("Optimized Plate Thickness:", thickness, 'm')

Output hitungan dari ketebalan plate

   Optimal Plate Thickness: 0.025 m

Cost Calculation

Setelah mendapatkan dimensi dan tebal plat yang dibutuhkan dan telah di optimasi kita dapat mencari nilai harga plat tabung di harga pasaran, setelah mendapatkannya dapat dimasukan ke dalam perhitungan excel. Tabung yang dibutuhkan sekitar memiliki berat 4.324 kg. Lalu uang yang digunakan selama proses manukfaktur untuk membeli bahan-bahan yaitu sekitar Rp 287.036,405 yang mana masih dibawah budget di angka Rp 500.000,00.