Fadil Naufal Wahas

From ccitonlinewiki
Revision as of 15:41, 28 September 2024 by Fadil.naufal (talk | contribs)
Jump to: navigation, search

Assalamu'alaikum Warahmatullahi Wabarakatuh, Salam Sejahtera untuk kita semua.

Perkenalkan, saya Fadil Naufal Wahas, NPM 2306185416, mahasiswa magister Departemen Teknik Mesin Universitas Indonesia.



Thesis

Tesis : Studi komputasi tentang pengaruh sifat fluida terhadap karakteristik counter-current flow limitation (CCFL) di 1/30 pressurized water reactor (PWR) hot leg

Thesis : Computational study of the effects of fluid properties on counter-current flow limitation (CCFL) characteristics in 1/30 pressurized water reactor (PWR) hot leg

Pembimbing : Prof. Dr. Ir. Harinaldi, M.Eng.

PWR.png

Pada kanal uap (hot leg) teras reaktor pada pembangkit listrik tenaga nuklir pressurized water reactor (PWR) terdapat fenomena counter-current flow limitation (CCFL) yang terjadi pada saat kondisi kecelakaan loss-of-coolant accident (LOCA).

Saat LOCA, karena adanya penurunan tekanan, terjadi penguapan air pendingin yang berada di reaktor sehingga uap tersebut mengalir ke steam generator (SG) melalui hot leg. Sebagian uap yang terkumpul di SG tersebut mengalami kondensasi menjadi air. Air tersebut, dipengaruhi gravitasi, mengalir kembali ke reaktor, berlawanan arah dengan uap. Aliran berlawanan arah ini terjadi saat kecepatan aliran uap berada di bawah ambang batas flooding atau counter-current flow limitation (CCFL).

Fenomena CCFL ini menjadi penting untuk diteliti karena berhubungan dengan keselamatan reaktor nuklir. Oleh karena itu, pengaruh sifat fisik fluida terhadap karakteristik CCFL perlu diinvestigasi.


DAI5 Framework

DAI5 Framework is a guideline developed by Dr. Ahmad Indra Siswantara for problem-solving processes. This video essay is my interpretation of the DAI5 Framework.



Computational Fluid Dynamics (CFD)

Cavity 2D Laminar Flow with CFDSOF

The image below shows a 0.1 m by 0.1 m cavity section filled with air (udara) where the upper wall is moving in the +x-axis direction at 0.1 m/s where the density (ρ) of air is 1 kg/m^3, the dynamic viscosity (µ) of air is 2 * 10^-5 kg/m-s, and the flow is laminar, i.e. Re = 500.


Cav2d case.png


The grid-structured *CFDSOF* software is used in this simulation case.

First, cavity is discritized by dividing it into cells, in this case, a 10x10 cells.


Cav2d discret.png


Then, after specifying the boundary condition of the walls and the iteration of the case, the iteration begins. The results of the velocity vector field and the pressure contour are shown in the images below.


Cav2d u.png

Cav2d p.png


It can be shown that the air is indeed moving inside the cavity and the air that is closest to the upper wall is also moving with the greatest magnitude. From the pressure contour, it can be seen that the upper-most-right corner has the greatest pressure. This is due to the fact that air is colliding at that corner and is diverted to the adjacent bottom. This collision occurs at the 4 corners of the wall, thus creating the swirling effect with the smallest velocity magnitude at the center of the swirl.


OpenFOAM Solvers

Here are solvers that OpenFOAM offers. The table below classifies the solver based on the flow of the fluid and depends on the case-by-case problem.

OpenFOAM Solvers
No. Solver Algorithm Time Flow Compressibility Phase
1 simpleFoam SIMPLE Steady-State Laminar/Turbulent Incompressible Single-phase
2 icoFoam PISO Transient Laminar Incompressible Single-phase
3 pisoFoam PISO Transient Turbulent Incompressible Single-phase
4 pimpleFoam PISO+SIMPLE Transient Turbulent Incompressible Single-phase
5 interFoam PISO+SIMPLE Transient Turbulent Incompressible Multi-phase
6 - - - - - -


SIMPLE = Semi-Implicit Method for Pressure Linked Equations

PISO = Pressure Implicit with Splitting of Operators