Aisyah Rahmi Nurhanifah
Contents
Introduction
Perkenalkan saya Aisyah Rahmi Nurhanifah dengan NPM 2106707845, program studi Teknik Perkapalan tahun 2021.
Resume Pertemuan 1 (26/5/2023)
Pada pertemuan pertama, saya mempelajari bahwa metode nemuerik adalah metode yang digunakan untuk menyelesaikan suatu permasalahan matematika yang kompleks melalui pendekatan secara numerikal. Matematika adalah ilmu pasti, akan tetapi kemarin saya menyadari bahkan di matematika pun tidak semua jawaban absolut atau eksak (pasti). Contoh dari soal (x-1)^2/(x-1) dengan x = 1. Apabila langsung disubstitusikan maka hasilnya ada 0/0 atau tidak terdefinisikan, sedangkan apabila dijabarkan melalui pendekatan secara limit, maka hasilnya adalah 2. Akan tetapi 2 juga bukan merupakan jawaban eksak karena pendekatan secara limit menjadikan x mendekati 1, bukan x = 1 (absolut). Oleh karena itu, di dunia ini yang abosolut hanyalah Tuhan Yang Maha Esa. Pada pertemuan kemarin, saya juga mempelajari tentang “counciousness”. Dalam menyelesaikann suatu permasalahan, kita harus “councious” mengenai permasalahan tersebut dan mencari solusi untuk menyelesaikannya. Selain itu, kami juga mendapatkan tugas untuk mendesain 1 liter tabung hidrogen dengan tekanan 8 bar dan biaya maksimal Rp. 500.000,00
Design & Optimization of Pressurized Hydrogen Storage
To design and optimizing a Hydrogen Storage with specification: Volume: 1 Liter Pressure: 8 bar Budget: Rp.500.000,00 I use ChatGPT and here are the steps in designing and optimizing a Hydrogen Storage:
Select Storage Method
Choose the appropriate method for hydrogen storage based on your requirements. Common methods include compressed gas cylinders, cryogenic liquid storage, or solid-state hydrogen storage materials. Each method has its advantages and considerations in terms of cost, efficiency, and safety.
Material Selection
Select suitable materials for your chosen storage method. For compressed gas cylinders, consider materials such as steel or aluminum alloys with high tensile strength and compatibility with hydrogen. For cryogenic storage, choose materials with low-temperature resistance. For solid-state storage, explore materials with high hydrogen storage capacity.
Design and Engineering
Develop a design for the storage system, considering factors such as pressure vessels, insulation, valves, fittings, and safety mechanisms. Engage with engineers and experts in the field to ensure compliance with safety standards and optimize the design for performance and cost.
Manufacturing Process
Explore cost-effective manufacturing processes such as seamless cylinder fabrication or efficient welding techniques.
Cost Optimization
Consider cost optimization techniques to stay within your budget. Explore options such as optimizing the size and shape of the storage vessel, minimizing material usage while maintaining safety requirements, and considering cost-effective manufacturing processes.
Simulation and Analysis
Utilize numerical simulations and analysis tools to evaluate the performance and safety of the storage system design. Perform stress analysis, pressure simulations, and leakage assessments to ensure the system's integrity and reliability.
Prototype and Testing
Build a prototype based on the optimized design and conduct thorough testing to validate the performance and safety of the storage system. This step is crucial to identify any design flaws or operational issues before implementation.
Compliance and Certification
Ensure compliance with applicable regulations, standards, and certifications for hydrogen storage systems. Consult with relevant authorities and certification bodies to meet the required safety and performance criteria.
Final Report of Optimization of Pressurized Hydrogen Storage
Thickness
def calculate_optimized_thickness(volume, pressure):
# Aluminum alloy properties
yield_strength = 276e6 # Yield strength of the aluminum alloy in Pascals
safety_factor = 3 # Desired safety factor
# Conversion factors
bar_to_pa = 1e5 # Bar to Pascal conversion factor
# Convert pressure to Pascal
pressure_pa = pressure * bar_to_pa
# Calculate the radius of the cylinder using the given volume
radius = (3 * volume / (4 * math.pi))**(1/3)
# Calculate the hoop stress
hoop_stress = pressure_pa * radius / 2
# Calculate the required thickness
thickness = hoop_stress * safety_factor / yield_strength
# Convert thickness to millimeters
thickness_mm = thickness * 1000
return thickness_mm
# Input parameters
volume = 1 # 1-liter capacity
pressure = 8 # 8 bar pressure
# Calculate the optimized thickness
optimized_thickness = calculate_optimized_thickness(volume, pressure)
print(f"The optimized thickness of the aluminum alloy hydrogen storage vessel is {optimized_thickness:.2f} mm.")
The optimized thickness of the aluminum alloy hydrogen storage vessel is 2.70 mm.
Heigth
def calculate_optimized_height(volume, pressure):
# Convert volume from liters to cubic meters
volume = volume * 0.001
# Constants
ideal_gas_constant = 8.314 # J/(mol·K)
temperature = 298.15 # 25 degrees Celsius in Kelvin
# Calculate the number of moles of gas
n = (pressure * volume) / (ideal_gas_constant * temperature)
# Assume the diameter of the container is 100 mm
diameter = 100 # mm
# Calculate the radius of the container in meters
radius = diameter / 2000 # Conversion from mm to meters
# Calculate the height of the container in meters
height = volume / (math.pi * (radius ** 2))
# Convert height from meters to millimeters
height_mm = height * 1000
return height_mm
# Input values
capacity = 1 # liter
pressure = 8 # bar
# Calculate the optimized height
optimized_height = calculate_optimized_height(capacity, pressure)
print(f"The optimized height of the aluminum alloy hydrogen storage container is {optimized_height:.2f} mm.")
The optimized height of the aluminum alloy hydrogen storage container is 127.32 mm.
Diameter
def calculate_optimized_diameter(volume, pressure):
# Convert pressure from bar to Pascal
pressure_pa = pressure * 100000
# Convert volume from liters to cubic meters
volume_m3 = volume / 1000
# Constants
gas_constant = 8.3145 # Ideal gas constant in J/(mol*K)
molar_mass = 0.002016 # Molar mass of hydrogen in kg/mol
# Calculate the number of moles of hydrogen
n = (pressure_pa * volume_m3) / (gas_constant * 298)
# Calculate the mass of hydrogen
mass_hydrogen = n * molar_mass
# Density of aluminum alloy (assumed)
density_alloy = 2.640 # kg/m^3
# Calculate the volume of the storage vessel in cubic meters
volume_vessel = mass_hydrogen / density_alloy
# Calculate the radius of the vessel in meters
radius_vessel = math.sqrt(volume_vessel / (math.pi * 4 / 3))
# Convert radius from meters to millimeters
diameter_mm = radius_vessel * 2000
return diameter_mm
# Inputs
volume_liters = 1
pressure_bar = 8
# Calculate optimized diameter
optimized_diameter = calculate_optimized_diameter(volume_liters, pressure_bar)
print(f"The optimized diameter is {optimized_diameter:.2f} mm.")
The optimized diameter is 15.34 mm.
Surface Area
def calculate_surface_area(radius, height):
return 2 * math.pi * radius * (radius + height)
def find_surface_area():
# Konversi radius, tinggi, dan ketebalan plat menjadi cm
radius_cm = 0.767
height_cm = 12.732
thickness_mm = 2.70
# Konversi kapasitas dalam liter menjadi volume dalam cm^3
volume = 1000
# Konversi tekanan dalam bar menjadi tekanan dalam Pa
pressure = 8 * 10**5
# Kekuatan tarik baja dalam Pa
tensile_strength = 90 * 10**6
# Konversi ketebalan plat menjadi cm
thickness_cm = thickness_mm / 10
# Hitung jari-jari dalam cm
inner_radius = radius_cm - thickness_cm
# Hitung tinggi dalam cm
inner_height = height_cm - (2 * thickness_cm)
# Hitung luas permukaan tabung dalam cm^2
surface_area = calculate_surface_area(inner_radius, inner_height)
# Periksa apakah tekanan dalam batas kekuatan tarik baja
if surface_area * pressure <= tensile_strength:
return surface_area
else:
return None
# Panggil fungsi untuk mencari luas permukaan tabung
surface_area = find_surface_area()
# Tampilkan hasil
if surface_area is not None:
print("Luas permukaan tabung hidrogen: ", surface_area, " cm^2")
else:
print("Luas permukaan tabung melebihi batas kekuatan tarik baja.")
Luas permukaan tabung hidrogen: 39.62448716631248 cm^2