Aisyah Rahmi Nurhanifah

From ccitonlinewiki
Revision as of 10:58, 9 June 2023 by Aisyah.rahmi (talk | contribs) (Diameter)
Jump to: navigation, search

Introduction

Perkenalkan saya Aisyah Rahmi Nurhanifah dengan NPM 2106707845, program studi Teknik Perkapalan tahun 2021.

Resume Pertemuan 1 (26/5/2023)

Pada pertemuan pertama, saya mempelajari bahwa metode nemuerik adalah metode yang digunakan untuk menyelesaikan suatu permasalahan matematika yang kompleks melalui pendekatan secara numerikal. Matematika adalah ilmu pasti, akan tetapi kemarin saya menyadari bahkan di matematika pun tidak semua jawaban absolut atau eksak (pasti). Contoh dari soal (x-1)^2/(x-1) dengan x = 1. Apabila langsung disubstitusikan maka hasilnya ada 0/0 atau tidak terdefinisikan, sedangkan apabila dijabarkan melalui pendekatan secara limit, maka hasilnya adalah 2. Akan tetapi 2 juga bukan merupakan jawaban eksak karena pendekatan secara limit menjadikan x mendekati 1, bukan x = 1 (absolut). Oleh karena itu, di dunia ini yang abosolut hanyalah Tuhan Yang Maha Esa. Pada pertemuan kemarin, saya juga mempelajari tentang “counciousness”. Dalam menyelesaikann suatu permasalahan, kita harus “councious” mengenai permasalahan tersebut dan mencari solusi untuk menyelesaikannya. Selain itu, kami juga mendapatkan tugas untuk mendesain 1 liter tabung hidrogen dengan tekanan 8 bar dan biaya maksimal Rp. 500.000,00

Design & Optimization of Pressurized Hydrogen Storage

To design and optimizing a Hydrogen Storage with specification: Volume: 1 Liter Pressure: 8 bar Budget: Rp.500.000,00 I use ChatGPT and here are the steps in designing and optimizing a Hydrogen Storage:

Select Storage Method

Choose the appropriate method for hydrogen storage based on your requirements. Common methods include compressed gas cylinders, cryogenic liquid storage, or solid-state hydrogen storage materials. Each method has its advantages and considerations in terms of cost, efficiency, and safety.

Material Selection

Select suitable materials for your chosen storage method. For compressed gas cylinders, consider materials such as steel or aluminum alloys with high tensile strength and compatibility with hydrogen. For cryogenic storage, choose materials with low-temperature resistance. For solid-state storage, explore materials with high hydrogen storage capacity.

Design and Engineering

Develop a design for the storage system, considering factors such as pressure vessels, insulation, valves, fittings, and safety mechanisms. Engage with engineers and experts in the field to ensure compliance with safety standards and optimize the design for performance and cost.

Manufacturing Process

Explore cost-effective manufacturing processes such as seamless cylinder fabrication or efficient welding techniques.

Cost Optimization

Consider cost optimization techniques to stay within your budget. Explore options such as optimizing the size and shape of the storage vessel, minimizing material usage while maintaining safety requirements, and considering cost-effective manufacturing processes.

Simulation and Analysis

Utilize numerical simulations and analysis tools to evaluate the performance and safety of the storage system design. Perform stress analysis, pressure simulations, and leakage assessments to ensure the system's integrity and reliability.

Prototype and Testing

Build a prototype based on the optimized design and conduct thorough testing to validate the performance and safety of the storage system. This step is crucial to identify any design flaws or operational issues before implementation.

Compliance and Certification

Ensure compliance with applicable regulations, standards, and certifications for hydrogen storage systems. Consult with relevant authorities and certification bodies to meet the required safety and performance criteria.


Final Report of Optimization of Pressurized Hydrogen Storage

Thickness

def calculate_optimized_thickness(volume, pressure):

   # Aluminum alloy properties
   yield_strength = 276e6  # Yield strength of the aluminum alloy in Pascals
   safety_factor = 3  # Desired safety factor
   
   # Conversion factors
   bar_to_pa = 1e5  # Bar to Pascal conversion factor
   
   # Convert pressure to Pascal
   pressure_pa = pressure * bar_to_pa
   
   # Calculate the radius of the cylinder using the given volume
   radius = (3 * volume / (4 * math.pi))**(1/3)
   
   # Calculate the hoop stress
   hoop_stress = pressure_pa * radius / 2
   
   # Calculate the required thickness
   thickness = hoop_stress * safety_factor / yield_strength
   
   # Convert thickness to millimeters
   thickness_mm = thickness * 1000
   
   return thickness_mm
   # Input parameters
   volume = 1  # 1-liter capacity
   pressure = 8  # 8 bar pressure
   # Calculate the optimized thickness
   optimized_thickness = calculate_optimized_thickness(volume, pressure)
   print(f"The optimized thickness of the aluminum alloy hydrogen storage vessel is {optimized_thickness:.2f} mm.")

The optimized thickness of the aluminum alloy hydrogen storage vessel is 2.70 mm.

Heigth

   # Convert volume from liters to cubic meters
   volume = volume * 0.001
   # Constants
   ideal_gas_constant = 8.314  # J/(mol·K)
   temperature = 298.15  # 25 degrees Celsius in Kelvin
   # Calculate the number of moles of gas
   n = (pressure * volume) / (ideal_gas_constant * temperature)
   # Assume the diameter of the container is 100 mm
   diameter = 100  # mm
   # Calculate the radius of the container in meters
   radius = diameter / 2000  # Conversion from mm to meters
   # Calculate the height of the container in meters
   height = volume / (math.pi * (radius ** 2))
   # Convert height from meters to millimeters
   height_mm = height * 1000
   return height_mm
   # Input values
   capacity = 1  # liter
   pressure = 8  # bar
   # Calculate the optimized height
   optimized_height = calculate_optimized_height(capacity, pressure)
   print(f"The optimized height of the aluminum alloy hydrogen storage container is {optimized_height:.2f} mm.")

The optimized height of the aluminum alloy hydrogen storage container is 127.32 mm.

Diameter

def calculate_optimized_diameter(volume, pressure):

   # Convert pressure from bar to Pascal
   pressure_pa = pressure * 100000
   # Convert volume from liters to cubic meters
   volume_m3 = volume / 1000
   # Constants
   gas_constant = 8.3145  # Ideal gas constant in J/(mol*K)
   molar_mass = 0.002016  # Molar mass of hydrogen in kg/mol
   # Calculate the number of moles of hydrogen
   n = (pressure_pa * volume_m3) / (gas_constant * 298)
   # Calculate the mass of hydrogen
   mass_hydrogen = n * molar_mass
   # Density of aluminum alloy (assumed)
   density_alloy = 2.640  # kg/m^3
   # Calculate the volume of the storage vessel in cubic meters
   volume_vessel = mass_hydrogen / density_alloy
   # Calculate the radius of the vessel in meters
   radius_vessel = math.sqrt(volume_vessel / (math.pi * 4 / 3))
   # Convert radius from meters to millimeters
   diameter_mm = radius_vessel * 2000
   return diameter_mm
   # Inputs
   volume_liters = 1
   pressure_bar = 8
   # Calculate optimized diameter
   optimized_diameter = calculate_optimized_diameter(volume_liters, pressure_bar)
   print(f"The optimized diameter is {optimized_diameter:.2f} mm.")

The optimized diameter is 15.34 mm.

a

a

a

a

a