Renaldio Pradipta Puspito

From ccitonlinewiki
Revision as of 09:14, 9 June 2023 by Renaldio Pradipta Puspito (talk | contribs) (Design & Optimization of Pressurized Hydrogen Storage)
Jump to: navigation, search

Introductiom

Perkenalkan Nama Saya Renaldio Pradipta Puspito dengan NPM 2106733401 biasa dipanggil Aldi salam kenal

Resume Pertemuan 1

pada pertemuan ini kita membahas tentang consiousnes bagaimana cara menghubungkan metode numerik dengan ketuhanan yang maha esa. disini juga diperkenalkan dengan sistem dari air.eng.ui.ac.id. kami melakukan diskusi tentang kita itu harus consiousnes terhadap apa yang kita lakukan ntah itu dalam belajar metode numerik maupun mata kuliah lain. Kita juga membicarakan apakah ketika meninggal diri kita ada atau tidak. kurang lebih ini adalah pertemuan pembukan yang meng introduce antara dosen dengan mahasiswa yang meng highligt=ht tentang consciouness.

Design & Optimization of Pressurized Hydrogen Storage

objective Design and Optimization

specification cap : 1 L Pressure Level : 8 bar

Maximal price Rp.500000

Answer To design and optimize a pressurized hydrogen storage system with a capacity of 1 liter and a pressure level of 8 bar within a maximum price of Rp. 500,000, we need to consider various factors such as the storage vessel, materials, safety, and cost-efficiency. To answer this i use ChatGPT to help answer and Here's a suggested approach to designing and optimizing such a system:

Storage Vessel Selection:

Choose a lightweight and compact storage vessel with a capacity of 1 liter and a working pressure rating of at least 10-12 bar to provide a safety margin. Consider materials such as carbon fiber reinforced composites or high-strength steel that can withstand the desired pressure and minimize weight. Ensure the storage vessel complies with relevant safety standards and regulations.

Pressure Regulation:

Include a pressure regulator or pressure relief valve to maintain the hydrogen pressure at a constant level, preventing over-pressurization. Optimize the pressure regulator design to ensure efficient and reliable pressure control.

Safety Considerations:

Incorporate safety features such as burst disks or pressure relief devices to prevent excessive pressure buildup and ensure the system can safely vent hydrogen in case of emergencies. Implement a robust leak detection system to monitor and detect any potential leaks in the storage system. Follow safety guidelines and standards for hydrogen storage and handling.

Cost Optimization:

Consider cost-effective materials and manufacturing processes while maintaining safety and performance requirements. Explore potential cost savings by leveraging economies of scale in manufacturing or utilizing standardized components. Optimize the system design to minimize material usage and reduce manufacturing complexity.

System Integration:

Ensure proper integration of the storage system with the overall hydrogen infrastructure, considering factors like refueling protocols and compatibility with hydrogen fuel cell systems or other hydrogen-consuming devices.

Cost Analysis:

Conduct a thorough cost analysis considering the selected storage vessel, components, materials, manufacturing, and any additional safety features. Optimize the design and manufacturing processes to meet the maximum price requirement of Rp. 500,000.

It's important to note that designing and optimizing a pressurized hydrogen storage system requires detailed engineering analysis and expertise. Working with professionals experienced in hydrogen storage and considering the latest industry standards and regulations is highly recommended to ensure safety, performance, and cost-effectiveness.

Kalkulassi mencari desain tabung hidrogen

import math

def calculate_surface_area(radius, height):
    # Calculate the surface area of the tube
    base_area = math.pi * radius**2
    lateral_area = 2 * math.pi * radius * height
    surface_area = 2 * base_area + lateral_area

    return surface_area

def find_optimal_dimensions(volume, pressure, tensile_strength):
    # Convert volume from mL to cm^3
    volume_cm3 = volume

    # Convert pressure from bar to Pascal
    pressure_pa = pressure * 100000

    # Initialize variables for optimal dimensions
    optimal_radius = None
    optimal_height = None
    min_surface_area = float('inf')

    # Iterate over possible radius values
    for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1):
        # Calculate the corresponding height for the given volume and radius
        height = volume_cm3 / (math.pi * radius**2)

        # Calculate the surface area for the current dimensions
        surface_area = calculate_surface_area(radius, height)

        # Check if the current surface area is the lowest found so far
        if surface_area < min_surface_area:
            min_surface_area = surface_area
            optimal_radius = radius
            optimal_height = height

    # Convert optimal radius to centimeters
    optimal_radius_cm = optimal_radius

    return optimal_radius_cm, optimal_height

# Define the input parameters
volume = 1000  # 1 liter = 1000 mL
pressure = 8  # bar
tensile_strength = 300  # MPa

# Find the optimal dimensions
optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength)

# Display the results
print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar:")
print(f"Radius: {optimal_radius_cm} cm")
print(f"Tinggi: {optimal_height} cm")