Franklin Geri

From ccitonlinewiki
Revision as of 10:08, 2 June 2023 by Franklin.geri (talk | contribs) (Design and Optimization of Pressurized Hydrogen Storage System)
Jump to: navigation, search

Introduction

Halooo, Nama Saya Franklin Geri biasa dipanggil Franklin, Kelahiran tahun 2002 namun kelihatan seperti 2006. Saya lahir di Jakarta tepatnya tanggal 28 Maret. Saya tinggal di Pondok Kopi, Jakarta Timur.

RESUME PERTEMUAN 1 (26/05/2023

Pada pertemuan pertama dengan pak ahmad indra siswantara(DAI) kami diberi penjelasan tentang pengantar dalam mempelajari mata kuliah metode numerik. Pak Dai menekankan bahwa kita harus berusaha semaksimal mungkin daripada kita menyontek dan tidak tau arah materi tersebut. Pak DAI memberikan arahan mengenai pentingnya kesadaran dalam menyelesaikan suatu masalah. Diberikan pula study case berupa matematika dasar dimana jawabannya adalah undefined dan infinite. 0/0 merupakan bentuk tak tentu, oleh karena itu apa yang mendasari kita mengatakan bahwa ilmu pengetahuan bersifat eksak?. Pada dasarnya segala teori yang dibuat oleh manusia tidak dapat dibuktikan kebenarannya, semuanya hanyalah pendekatan untuk mempermudah kita dalam mengkonsumsi ilmu pengetahuan. Karna pada akhirnya, kebenaran hanya milik Tuhan Yang Maha Esa. Pak DAI juga menjelaskan perbedaan mengenai ilmu pengetahuan dan ilmu agama, dimana pada dasarnya keduanya bernilai sama. Namun, perlu diingat bahwa ilmu pengetahuan adalah buatan manusia sedangkan agama berasal dari Tuhan. Kami juga diberikan Tugas untuk membuat desain tabung hidrogen dengan optimum, volum tabung 1 liter, dengan tekanan 8? desain dengan batasan harga tidak boleh lebih dari 500 ribu, Tabung hidrogen ini nantinya dipergunakan untuk mencampur dengan bahan bakar di motor agar lebih irit.

Hal yang paling penting oleh pak DAI adalah realitas, dimana jika kita tidak merasakan dampaknya, pasti kita akan lupa. lalu pak DAI menjelaskan tentang chatGPT dimana kita harus bisa membuat pertanyaan sebaik mungkin ke sistem tersebut. lalu dilanjutkan dengan pembahasan mengenai dasar pemikiran dan kepercayaan yang kita anut, menjelaskan tentang qbit atu quantum bit, lalu kita diberikn pertanyaan mengenai pembagian dan pengurangan dan diminta menjelaskan mengapa memilih jawaban tersebut, atas dasar apa dan kenapa?.

Kesadaran dalam belajar sangat penting karena itu melibatkan pemahaman dan kesadaran diri terhadap proses pembelajaran.Lantas mengapa consciousness menjadi hal yang sangat penting dalam proses pembelajaran? berikut beberapa poin yang sudah saya rangkum :

1.Pemahaman diri: Kesadaran dalam belajar membantu kita memahami kekuatan dan kelemahan kita sebagai pembelajar. Dengan mengetahui cara terbaik dalam belajar, kita dapat mengembangkan strategi yang efektif dan efisien untuk meningkatkan keterampilan belajar kita.

2.Fokus dan perhatian: Kesadaran dalam belajar membantu kita tetap fokus dan berada dalam saat ini saat kita belajar. Dengan menghilangkan gangguan dan meningkatkan konsentrasi, kita dapat memperoleh pemahaman yang lebih baik tentang materi dan mengingat informasi dengan lebih baik.

3.Pencapaian tujuan: Kesadaran diri tentang apa yang ingin kita capai dalam belajar membantu Anda menetapkan tujuan yang jelas dan terarah. Dengan memiliki kesadaran ini, kita dapat merencanakan langkah-langkah yang diperlukan untuk mencapai tujuan tersebut, mengukur kemajuan, dan membuat perubahan jika diperlukan.

Design and Optimization of Pressurized Hydrogen Storage System

Specifications of Hydrogen Storage :

  • Volume  : 1 Liter
  • Pressure  : 8 bar
  • Cost  : < Rp500.000

Abstract

Hydrogen is a clean energy source with the potential to replace fossil fuels. Hydrogen has emerged as an intriguing alternative fuel in efforts to reduce greenhouse gas emissions and dependence on fossil fuels.However, efficient and safe storage of hydrogen remains a significant challenge. This research aims to address this challenge by designing and optimizing pressurized hydrogen storage systems.

Through an extensive literature review, this study explores the current concepts and technologies related to the design and optimization of pressurized hydrogen storage systems. Key parameters such as storage capacity, working pressure, tank materials, and safety considerations are analyzed. Additionally, factors like weight, size, cost, and energy efficiency are taken into account during the design process.

The findings of this research highlight the importance of designing and optimizing pressurized hydrogen storage systems for improved efficiency and safety. By considering various factors and incorporating cutting-edge technologies, the storage capacity and performance of hydrogen storage systems can be enhanced. However, challenges such as production costs and infrastructure development need to be addressed for widespread implementation.


Introduction

The design and optimization of pressurized hydrogen storage systems play a crucial role in the efficient and safe utilization of hydrogen as an alternative energy source. Hydrogen has gained significant attention as a clean and sustainable fuel that can potentially replace conventional fossil fuels. However, the successful integration of hydrogen into various industries and applications requires effective storage solutions.

Pressurized hydrogen storage systems have emerged as a common method for storing hydrogen. These systems utilize high-pressure tanks to store hydrogen gas, allowing for compact storage and maximizing the energy density of hydrogen. However, the design and optimization of these storage systems require careful consideration of various factors, including safety, efficiency, capacity, and cost-effectiveness.

The primary objective of this research is to explore the design and optimization of pressurized hydrogen storage systems to enhance their performance and ensure safe operations. By studying the existing literature and considering the latest technological advancements, this research aims to identify key parameters and design considerations necessary for developing efficient and reliable storage systems.

The design process involves analyzing various factors, such as the storage capacity required, the working pressure of the system, the materials used for the storage tanks, and the safety measures implemented. Additionally, factors like weight, size, cost, and energy efficiency are considered during the optimization phase to ensure practicality and economic viability.


Methodology

In this study, a comprehensive literature review was conducted to understand the current concepts and technologies in the design and optimization of pressurized hydrogen storage systems. Key parameters such as storage capacity, working pressure, tank materials, and safety were analyzed. Factors such as weight, size, cost, and energy efficiency were also considered in designing an optimal system.


Results

Material Analysis

When it comes to hydrogen storage, various materials can be considered based on their properties and suitability for different storage methods. Here are some commonly used materials for hydrogen storage:

1. Compressed Gas Storage:

Type I: High-strength steel cylinders are commonly used for storing hydrogen gas under high pressure. These cylinders have good durability, high pressure resistance, and are widely available.

Type II: Aluminum-lined, steel-reinforced cylinders offer reduced weight compared to Type I cylinders while maintaining high-pressure capabilities.

Type III: Composite cylinders, typically made of carbon fiber reinforced with epoxy, provide lightweight storage options with good strength and pressure resistance.

2.Liquid Hydrogen Storage:

Cryogenic Tanks: Specialized tanks designed to store hydrogen in its liquid form at extremely low temperatures (-253°C). These tanks are typically made of materials like stainless steel or aluminum alloys with excellent low-temperature properties.

3. Chemical Hydrides:

Metal Hydrides: Certain metals, such as magnesium or lithium, can absorb hydrogen gas and form metal hydrides. These metal hydrides can release hydrogen when heated or exposed to certain conditions.

Complex Hydrides: Compounds like sodium borohydride (NaBH4) or ammonia borane (NH3BH3) can store hydrogen through chemical reactions. Hydrogen can be released from these compounds by adding a catalyst or applying heat.

4. Carbon-based Materials:

Carbon Nanotubes (CNTs): CNTs can adsorb hydrogen molecules on their surfaces, providing potential storage capabilities. However, further research is needed to improve their efficiency and address challenges related to cost and practical implementation.

Metal-Organic Frameworks (MOFs): MOFs are highly porous materials that can adsorb hydrogen gas, offering a promising storage option. The structure and chemical properties of MOFs can be tailored to enhance hydrogen storage capacity.

A thorough evaluation of various materials commonly used for hydrogen storage, such as high-strength steel alloys, carbon fiber composites, and polymer-lined tanks, was conducted. Factors considered during the evaluation included material properties (e.g., strength, corrosion resistance, and permeation), compatibility with hydrogen gas, manufacturing feasibility, and cost.

Based on the evaluation, a set of selection criteria was established to identify the most suitable material for the pressurized hydrogen storage system. The criteria encompassed safety, performance, cost-effectiveness, manufacturability, and availability.

A detailed analysis of the shortlisted materials was carried out, taking into account their individual merits and drawbacks. The analysis involved assessing the materials' ability to withstand the required pressure, their compatibility with hydrogen, weight considerations, manufacturability, and cost implications.

With the considerations mentioned above. the material chosen in the design of pressurized Hydrogen Storage System is :

[[Type III: Composite cylinders]]


Conclusion

This research demonstrates that the design and optimization of pressurized hydrogen storage systems can improve the efficiency and safety of hydrogen utilization as an alternative fuel. By considering factors such as storage capacity, working pressure, and safety, hydrogen storage systems can be efficiently and optimally designed. However, further research is still needed to address challenges such as production costs and required infrastructure.


References

https://chat.openai.com

[OurFuture.Energy]. (2019, June 27). How It Works: Hydrogen Storage [Video]. Youtube.com. https://www.youtube.com/watch?v=oS32_r4MM94