Pe

From ccitonlinewiki
Revision as of 23:02, 1 June 2023 by Rawhul Ihsan Setyoko (talk | contribs) (Design & Optimization of Pressurized Hydrogen Storage)
Jump to: navigation, search

INTRODUCTION Saya Rawhul Ihsan Setyoko dengan NPM 2106639371, mahasiswa Teknik Perkapalan 2021, saya lahir di jakarta 13 Agustus 2003


Resume 26/05/2023

pada hari ini saya belajar untuk bagaimana kita saling mengenal dengan bapak Ahmad Indra, pak DAI berharap bahwa mahasiswa memanfaatkan waktu untuk berinteraksi dengan dosen,belajar mandiri juga penting dan tidak hanya mengandalkan belajar di kelas, pak DAI menjelaskan bagaimana individual study case yang harus dikerjakan, belajar apapun harus melihat realitas, conciesness adalah kondisi dimana kesadaran tidak hanya fisik saja,

pada hari ini saya juga belajar bahwa sebenarnya aspek consciousness merupakan salah satu yang terpenting dalam kehidupan kita, bagaimana kita menggunakan otak kita dalam memproses hal - hal yang terjadi di sekitar kita, dan bagaimana kita menggunakan otak untuk merepresentasikan dunia yang sekarang kita lihat, dimana kesimpulan yang dapat saya ambil adalah bahwa setiap permasalahan pasti membutuhkan aspek conscious untuk menyelesaikannya, bahkan bagaimana kita sebagai manusia mengkonstruksi dunia di sekeliling kita pasti membutuhkan conscious dan kepercayaan bahwa dunia tersebut ada, dapat dilihat pada masalah dimana kita bisa mendapatkan solusinya, namun semua solusi tidak bisa dibuktikan secara exact apakah solusi tersebut benar atau tidak, karena jika bisa dibuktikan maka tidak ada ruang tersisa untuk kepercayaan (faith).

Design & Optimization of Pressurized Hydrogen Storage

the study case is for determine the most efficient design of pressurized hydrogen storage at minimal cost, this are some step recommended by me based on my research


Design Optimization and Material Choosing

in some research, the best material for optimazing the performance of the storage is to use layers, layers are the combine system of two or more material to maximise the effect of both material, in this case we use 2 material :

1. GFRP (Glass Fiber Reinforced Plastic)

2. Alumunium


To maximize the performance of the storage, we can use 2 layer of material, those material are metallic and composite polymeric layers thicknesses, number of composite layers and winding angle of filament-wound composite, were studied. Using Numerical Method Finite Element Analysis on a parametric study including 64 cases, shooting minimum tank weight and cost was performed. Using different thickness of composite polymeric layers is significant the same over all composite layers thickness Optimal design was found to be 8 mm thickness of Aluminum liner and one composite layer of high toughness GFRP material with thickness of 6 mm at angle 65°


Using Sorption - Based Storage

The timing between supply and energy demand cause calls for reliable storage system. In this current years, energy storage system become further significant with the widespread implementation of renewable energy. Hydrogen is being a renewable energy with the most demands past the current years, that makes hydrogen storage keep being upgraded to provide the most efficient storage at minimum price, with the research I did from reading many sources, that one journal says that hydrogen storage with sorption based storage system exibit huge potential due to a high energy density. An average temperature lift of 25 °C, energy density of 40 kWh/m3 , and energy efficiency of 73% were obtained.


Do the Life Cycle Assessment method

Life cycle assessment method for determine the tube life cycle from the storage material until it’s not being used anymore, the main factor from this method is knowing whether this storage are toxic to the nature around. the step of doing this assessment are :


1. Objective and scope analysis

Ensure that when the product has passed the limit of use / old age, then the product will be treated in such a way that it does not damage and disturb nature.


2. Inventory Analysis

environmental influences in each stage of the analysis


3. Environmental Impact Analysis

material impact on the environment


4. Result Interpretation