Dendy Dwi Rohma P J

From ccitonlinewiki
Revision as of 21:21, 15 June 2020 by DendyJaya (talk | contribs) (Tugas Besar - Analisa Profil Permuakaan (Surface Roughness) yang Berbeda pada Properties Fluida Masuk yang Sama pada Intake Manifold Karburator)
Jump to: navigation, search
Dendy Dwi Rohma P J.S1 Teknik Mesin 2019 Ekstensi.Universitas Indonesia

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُ

BIODATA DIRI

Nama : Dendy Dwi Rohma Prahara Jaya

NPM  : 1906435473

Pendidikan Terakhir : Diploma III

Email : jaya.dendy1@gmail.com / dendy.dwi@ui.ac.id

Fakultas/ Jurusan : Teknik/ Teknik Mesin

Kelas Mekanika Fluida 02

Pertemuan Pertama


Hari, Tanggal : Rabu 31 Maret 2020 Oleh : Dr. Ahmad Indra dan Bang Edo

Pertemuan pertama pada hari ini dimulai dengan pemberian materi oleh bang Muhammad Hilman Gumelar atau akrab disapa bang Edo. Materi tersebut berisi tentang penjelasan aliran viskos di dalam pipa, pressure drop, hubungan dari jenis aliran viskos dengan pressure drop dan simulasi aliran didalam pipa menggunakan software CFDSOF.

Aliran viskos adalah aliran dimana kekentalan yang melewati suatu ruangan nilainya diperhitungkan. Jenis aliran viskos dalam pipa ditentukan dari bilangan Reynold nya. Re besar (Re>4000) maka jenis alirannya turbulen, sedangkan Re kecil (Re<2100) maka jenis alirannya laminar. Bilangan reynold adalah rasio gaya inersia suatu fluida terhadap gaya viskos fluida tersebut.

Re = (ρ*v*D)/μ

dimana :

v = Kecepatan aliran

D = Diameter pipa

ρ = massa jenis

μ = viskositas dinamik


Pada pertemuan ini bang Edo juga memberikan simulasi terkait penggunaan aplikasi CFD yang mana akan digunakan untuk mensimulasikan rangkaian aliran.Berikut hasil latihan dari penggunaan software CFDSOF.

Data simulasi yang akan digunakan pada software CFDSOF. Simulasi aliran udara pada bidang 2D.

Data Simulasi 2D

Hasil simulasi aliran udara pada bidang 2D.

Hasil Analisa CFD Plat Datar


Kemudian bang edo memberikan beberapa pertanyaan tentang pengertian yaitu:

1. Apa yang dimaksud dengan entrance region ?

2. Apa yang dimaksud dengan aliran berkembang sempurna ?

3. Bagaimana hubungan entrance region dengan aliran berkembang sempurna ?

4. Apa yang mempengaruhi pressure drop ?

5. Apa pengaruh viskositas terhadap aliran ?


Pertemuan Kedua


Hari, Tanggal : Rabu 1 April 2020 Oleh : Dr. Ahmad Indra dan Bang Edo

Pada ini dijelaskan tentang aplikasi mekanika fluidamisalnya aliran fluida dalam pipa. Ada 3 tahapan konservasi yang harus dipahami dalam mekanika fluida. Ketiga konservasi tersebut adalah sebagai berikut:

1. Hukum Konservasi Massa KonservasiMassa.png

2. Hukum Konservasi Energi KonservasiEnergi.png

3. Hukum Konservasi Momentum KonservasiMomentum.png

Kemudian dijelaskan tentang fenomena pada Entrance Region, terjadinya aliran Fully Developed pada pipa. Pada entarance region terdapat entrance length (Le) dimana entrance length dipengaruhi oleh U dan μ. Semakin tinggi kecepatan semakin panjang pula jarak Le dari Entrance Point dan μ (density) tinggi menjadikan Le yang pendek. Gambar dibawah ini adalah contoh Entrance Region dan Fully Developed:

1. Entrance Region

Gambar.Entrance Region

2. Fully Developed

Gambar.Fully Developed

Soal Simulasi CFD: Laminar Parallel Plate Flow - ARTIKEL 2

SoalP2.png

Hasil Simulasi:

Jawaban A.1: AliranpadaSb.X0.18,0.05,0.01.png

Perbandingan velocity profile 0.01, 0.05 dan 0.18m


Jawaban A.2: AliranpadaSb.X(0.72,0.05,0.01m)A2.png

Perbandingan velocity profile 0.01, 0.05 dan 0.72m
Perbandingan velocity profile 0.18m dan 0.72m


Jawaban B.1: AliranpadaSb.X(0.18,0.05,0.01m)B1.png

Perbandingan velocity profile 0.01, 0.05 dan 0.18m


Jawaban B.2: AliranpadaSb.X(0.72,0.05,0.01m)B2.png

Perbandingan velocity profile 0.01, 0.05 dan 0.72m

Soal Simulasi CFD: Turbulent Parallel Plate Flow - ARTIKEL 3

SoalPlatDatarTurbulent.png

Hasil Simulasi: Contoh Hasil Slice pada Uin=0.02

PotonganUin0.02.png

Jawaban A.1:

Perbandingan velocity profile 0.01, 0.05, Le dan 2m

Jawaban A.2:

Perbandingan velocity profile 0.01, 0.85, Le dan 2m

Jawaban B.1:

Perbandingan viscosity profile 0.01, 0.05, Le dan 2m

Jawaban B.2:

Perbandingan viscosity profile 0.01, 0.85, Le dan 2m

Soal Simulasi CFD: Soal jawab mekanika fluida, munson, example 8.2 laminar pipe flow - ARTIKEL 4

Soal Pressure Drop pada Aliran Laminer dalam Pipa

Soal PressureDrop Laminer Pipa

Hasil Simulasi

ParaView Parameter

Inlet Slice (0,06, 1, 2.16, 4)m

p total Inlet Slice_(0.06, 1, 2.16 ,4)m

Pressure Drop pada (0,06, 1, 2.16, 4)m

Hasil Simulasi Pressure Drop Pipa Laminer



QUIZ 1: Mekanika Fluida

Soal No 4

A.Pengaruh Panjang Pipa pada Aliran Pipa Laminar Horizontal Terhadap Pressure Drop.

•Jenis aliran pada pipa ada 2 yaitu aliran laminar dan turbulen. Aliran didalam pipa dikatakan laminar jika nilai Re<2100.

Rumus Re

•Turunnya tekanan total pada pipa horizontal akibat adanya gesekan pada dinding pipa. Nilai gesekan tersebut berdasarkan perkalian viskositas dinamik fluida dengan kecepatan fluida tersebut pada suatu titik. (Gambar. Rumus Gaya Gesek Fluida). Arah gaya gesek fluida dengan dinding pipa berlawanan dengan arah aliran fluida dan nilai gaya gesek paling besar terdapat pada aliran fluida yang dekat dengan dinding pipa. (Gambar. Aliran Laminar dalam Pipa). Sesuai dengan Hk. konservasi energi, energi tidak dapat dimusnahkan tapi hanya berubah bentuk. Pada kasus pressure drop pada aliran laminar gaya gesek yang timbul antara fluida dengan dinding pipa tersbut menjadikan energi panas.

Rumus ShearStress Fluida
Aliran Laminer dalam Pipa

Tekanan pada fluida ada 3 jenis yaitu: •Tekanan Statik = tekanan yang diberikan oleh partikel fluida saat dalam kondisi diam atau statis ke segala arah. •Tekanan Dinamis = tekanan yang diakibatkan oleh pergerakan dari partikel fluida yang dipengaruhi oleh kecepatan dari partikel fluida itu sendiri. •Tekanan Hydrostatik = tekanan yang diakibatkan dari ketinggian fluida dari fluida terhadap titik steady statenya. Pada kasus aliran laminar dalam pipa horizontal nilai tekanan hidrostatik diabaikan karena ΔZ = 0.

B.Pengaruh adanya sudut θ pada aliran pipa laminar terhadap pressure drop (Δp).

•Kita ketahui aliran fluida memiliki 3 tekanan, yaitu tekanan static, tekanan dinamik, dan tekanan hidrostatik. Pada kasus aliran laminar pada pipa bersudut θ tekanan hidrostatiknya akan memiliki nilai.

Aliran pada Pipa Bersudut θ

•Pada aliran laminar pipa bersudut θ, pressure drop dapat dihitung dari perbedaan ketinggian pada titik 1 (p1) dengan titik 2 (p2). Nilai p1>p2.

Rumus Pressure Drop h
Rumus Beda Ketinggian

Soal No 5

A.Pengaruh Ketebalan Sublapisan Viskos Terhadap Pressure Drop

•Aliran turbulen adalah aliran yang memiliki Re tinggi. Karakteristik aliran turbulen dalam pipa horizontal memiliki Le yang pendek, tegangan geser yang besar pada dinding pipa, energi panas dihasilkan tinggi, kecepatan aliran pada center yang lebih rendah daripada aliran laminar dalam pipa horizontal. Dengan kecepatan inlet sama, diameter pipa sama, namun densitas fluida yang melalui pipa berbeda akan menjadinkan aliran fluida yang memiliki density tinggi akan memiliki Re yang lebih tinggi (Gambar. Rumus Re). Re kental> Re cair. Pada aliran turbulen terdapat suatu lapisan semu tipis akibat tegangan geser yang dinamakan sublapis viskos. Sublapisan viskos ini yang menimbulkan pressure drop. Sublapisan viskos besarnya di tentukan oleh viskositas, density fluida, dan tegangan geser disekitar dinding pipa. Semakin besar tegangan geser pada permukaan pipa maka semakin besar viskositas fluida sehingga semakin besar pula sublapisan viskosnya (Gambar. Rumus Tegangan Geser). Inilah hal yang nantinya akan membuat pressure drop pada aliran turbulen akan semakin besar.

Rumus Re
Rumus ShearStress

•Maka pressure drop akan berbanding lurus dengan sublapisan viskos.

Soal No 2

A.Hubungan Antara Beda Viskositas Dinamik pada Aliran Laminer Terhadap Panjang Entrance Length

•Aliran laminar adalah nilai bilangan Reynold dibawah 2100. Untuk menentukan jenis aliran dapat ditentukan dengan menentukan nilai bilangan reynoldnya dengan persamaan:

Rumus Re

Pada kasus A ini aliran diketahui adalah aliran laminar. Kemudian diberikan 𝜇1 = 4x10-5 kg/m.s dan 𝜇2 = 10-5 kg/m.s dengan Uin yang sama. Menurut saya Re dari 𝜇1 pada entrance region akan lebih kecil dari 𝜇2. Sehingga nilai Le1 dari 𝜇1 akan lebih pendek jika dibandingkan dengan Le2. Hal tersebut karena tegangan geser dari 𝜇1 lebih besar daripada tegangan geser 𝜇2. Rumus mengukur tegangan geser adalah:

Rumus ShearStress

Posisi entrance region dapat ditentukan dengan menghitung jarak entrance length dengan persamaan:

Rumus Le

Dengan kata lain dapat disimpulkan bahwa 𝜇 (viskositas dinamik) akan mempengaruhi entrance region dari suatu aliran. Semakin tinggi nilai 𝜇 maka nilai entrance region akan semakin kecil karena dipengaruhi oleh tegangan geser yang juga semakin meningkat.

B.Hubungan Antara Beda Kecepatan Inlet (Uin) pada Aliran Laminer Terhadap Panjang Entrance Length

•Pada aliran laminar akan terbentuk daerah entrance region antara entrance/ inlet dengan awal posisi fully developed. Jika diketahui nilai 𝜇 (viskositas dinamik) yang sama pada penggunaan kecepatan inlet yang berbeda U1 =0.01m/s dan U2 =0.04m/s. Maka untuk kedua penggunaan kecepatan inlet tersebut akan menghasilkan panjang entrance region yang berbeda. Entrance region akan semakin panjang/ membutuhkan waktu yang lama apabila aliran fluida masuk lebih besar. Karena dengan viskositas yang sama dan density (jenis fluida mengalir sama) nilai tegangan geser pada aliran dengan kecepatan inlet yang berbeda akan bernilai sama. Hal tersebut berdasarkan rumus tegangan geser dibawah ini.

Rumus ShearStress

Maka dapat disimpulkan entrance region akan semakin panjang/ semakin lama waktu yang dibutuhkan untuk mencapai fully developed jika kecepatan masuk pada suatu aliran ditingkatkan.

Soal No 3

A.Hubungan Antara Beda Kecepatan Inlet (Uin) Terhadap Jenis Aliran yang Akan Terjadi (Laminer atau Turbulen)

•Kecepatan merupakan sebuah vector. Sama halnya yang terjadi pada aliran fluida pada jenis turbulen. Aliran turbulen adalah aliran yang partikel - partikel nya bergerak secara acak, menghasilkan vector aliran yang kesegala arah. Sehingga resultan aliran terhadap sumbu. X pada kasus soal 3 akan semakin kecil jika dibandingkan dengan aliran laminer. Cara untuk menghitung kecepatan aliran turbulen tidak sama dengan cara menghitung kecepatan aliran laminar. Jika aliran laminar kita hanya perlu menghitung kecepatan rata rata 𝑢̅ nya saja (arah vector searah sb. x) dan dianggap semua titik memiliki kecepatan yang sama dengan kecepatan rata rata. Sedangkan untuk aliran turbulen kita harus mencari kecepatan rata rata 𝑢̅ dan kecepatan fluktuasi di titik tertentu u’(u total A = 𝑢̅ A + u’A).

Normalisasi U/Uin pada Aliran Laminer dan Turbulen

•Besarnya kecepatan pada aliran turbulen menyebabkan energi kinetiknya juga semakin besar yang nantinya akan menyebabkan sublapisan viskos semakin tebal dan energi panas yang dihasilkan pada aliran turbulen juga semakin besar.

Soal No 6

A.Manipulasi Jenis Aliran (Laminer dan Turbulen) dengan Properties Fluida Masuk yang Sama

•Pada kompetisi motor balap (road race) berbahan bakar bensin. Para mekanik akan meracik motor yang akan dipertandingkan sebaik mungkin. Pada kompetisi biasanya diatur cc motor yang akan dipertandingkan, tidak boleh motor kelas 200cc diturunkan pada ajang 150cc. Sehingga mekanik akan melakukan improvisasi agar motor dengan kelas yang sama memiliki performa yang tinggi. Salah satunya adalah dengan memanipulasi campuran bahan bakar dengan udara yang akan masuk ruang bakar. Pada motor biasa akan kita jumpai jenis manifold karburator/ inejksi yang halus pada permukaannya. Hal tersebut menjadikan besin dan udara tidak bisa tercampur maksimal. Akibatnya performa motor tidak dapat maksimal. Agar lebih maksimal dilakukan porting pada dinding manifold agar campuran bensin dan udara dapat tercampur maksimal.

Porting Golf pada Intake Manifold Motor

Berdasarkan karakteristik aliran turbulen, aliran ini akan memiliki bentuk aliran yang berputar ke segala arah.

Rumus Re
Rumus ShearStress

Dengan memberikan motif bola golf pada permukaan manifold, maka luasan dari permuaakan manifold akan meningkat/ dapat dikatakan tambah kasar. Sehingga aliran fluida yang melewati permukaan manifold tersebut akan mengalami tegangan geser yang lebih besar. Atau dapat dikatakan nilai dari 𝜇 (viskositas dinamik) akan lebih tinggi daripada penggunaan permukaan halus. Sehingga Re pada 𝜇 pada permukaan kasar lebih tinggi (Aliran Turbulen).

Soal No 1

A.Aliran Fluida Jenis Laminer pada Plat Datar (2D)

•Dalam mempelajari mekanika fluida kita mempelajari 3 hukum dasar atau biasa disebut governing equation: •Hukum Konservasi Energi dE/dt = W+Q •Hukum Konservasi Massa dm/ dt = 0 •Hukum Konservasi Momentum m.dv/ dt = ƩF Pada aliran laminar dalam plat datar digunakan hukum dasar hukum konservasi momentum dengan kecepatan searah sumbu x. Dengan asumsi kecepatan arah sb. Y disetiap titik dianggap nol dan kecepatan arah sb. Z nol/ kosong (karena hanya 2D).

Soal Simulasi CFD: Soal jawab mekanika fluida, Minor Losses Ex.8.6 - ARTIKEL 7

Soal Ex.8.6 Munson

Soal Minor Losses Artikel 7

Soal Minor Losses Ex.8.6 Munson

Potongan Melintang Fenomena Cortex

Potongan Melintang pada Wind Tunnel

Potongan Sepanjang Sb.-Z Fenomena Cortex

Potongan Sepanjang Sb.-Z (4.8, 4.5, 4, 3.3, 2.8, 2.1, 1.6, 1, 0.5)m

Calculator

Calculator

Hasil Perhitungan Pressure Drop Dalam Nozzle

Pressure Drop Dalam Nozzle

Hasil Perhitungan Pressure Drop Dalam Difusser

Pressure Drop Dalam Difusser

Pertemuan ke Simulasi Eksternal Flow Car Body

SoalCarBody.png CarMesh.png SebaranP.png SebaranU.png VortexU100.png VortexU100zoom.png


Tugas Besar - Analisa Profil Permuakaan (Surface Roughness) yang Berbeda pada Properties Fluida Masuk yang Sama pada Intake Manifold Karburator

  Pada kompetisi balap berbahan bakar bensin. Mekanik akan meracik kendaraan yang akan dipertandingkan sebaik mungkin. Pada kompetisi biasanya ada regulasi seperti pembatasan cc motor disetiap kelasnya, tidak boleh motor kelas 200cc diturunkan pada ajang 150cc. Sehingga mekanik akan melakukan improvisasi agar motor dengan kelas yang sama memiliki performa yang tinggi. Salah satunya adalah dengan memanipulasi campuran bahan bakar dengan udara yang akan masuk ruang bakar. Pada motor/ mobil biasa akan kita jumpai jenis manifold karburator/ inejksi yang halus pada permukaannya. Hal tersebut menjadikan besin dan udara tidak bisa tercampur maksimal atau dapat dikatakan campuran udara dan bahan bakar masih kasar. Akibatnya performa motor tidak dapat maksimal. Agar lebih maksimal dilakukan porting pada dinding manifold agar campuran bensin dan udara dapat tercampur maksimal. Porting adalah melakukan profiling pada dinding intake manifold agar surface rougnessnya lebih kasar. Diharapkan dengan dilakukannya profilling pada dinding manifold dapat menjadikan campuran udara dan bahan bakar lebih baik.

Intake Manifold Porting dan Polish