Bolonni Nugraha
Contents
- 1 BIODATA DIRI
- 2 Pertemuan Mekanika Fluida-02
- 2.1 Pertemuan 1 (Selasa, 31 Maret 2020)
- 2.2 Pertemuan 2 (Rabu, 1 April 2020)
- 2.3 Pertemuan 3 (Selasa, 7 April 2020)
- 2.4 Pertemuan 4 (Rabu, 8 April 2020)
- 2.5 Pertemuan 6 (Rabu, 15 April 2020)
- 2.6 Pertemuan 7 (Selasa, 21 April 2020)
- 2.7 Pertemuan 8 (Rabu, 22 April 2020)
- 2.8 Pertemuan 9 (Selasa, 28 April 2020)
- 2.9 Pertemuan 10 (Rabu, 29 April 2020)
- 2.10 Pertemuan 11 (Selasa, 5 Mei 2020)
- 2.11 Pertemuan 12 (Rabu, 6 Mei 2020)
- 2.12 Soal-jawab Mekanika Fluida
- 2.13 Tugas Besar: Penggunaan Ilmu Mekanika Fluida pada Desain Peluru Kendali
BIODATA DIRI
Nama : Bolonni Nugraha
NPM : 1806181741
Fakultas/ Jurusan : Teknik/ Teknik Mesin
Kelas Mekanika Fluida 02
Pertemuan Mekanika Fluida-02
Pertemuan 1 (Selasa, 31 Maret 2020)
Pada kelas kali ini, dilakukan Pendidikan Jarak Jauh dengan penggunaan perangkat lunak zoom. Penyampai materi kali ini adalah Bapak Muhammad Hilman Gumelar atau yang akrab disapa bang Edo. Materi yang disampaikan adalah mengenai pengaruh viskositas aliran di dalam pipa. Yang disampaikan berupa konsep-konsep dasar agar mahasiswa dapat memahami materi tersebut. Ditampilkan pula video mengenai transisi aliran turbulen menjadi aliran laminar. Berikutnya juga diperkenalkan sebuah perangkat lunak untuk pemodelan Computational Fluid Dynamics (CFD) bernama CFD-SOF.
The Reynolds Number (Re)
Bilangan Reynolds adalah perbandingan antara gaya inersia fluida dan gaya viskos yang terjadi pada fluida tersebut. Bilangan Reynolds merupakan bilangan tak berdimensi yang dapat membedakan suatu aliran itu dinamakan laminar, transisi atau turbulen.
Re = VD ρ/µ
Dimana :
V kecepatan (rata-rata) fluida yang mengalir (m/s)
D adalah diameter dalam pipa (m)
ρ adalah masa jenis fluida (kg/m3)
µ adalah viskositas dinamik fluida (kg/m.s) atau (N. det/ m2)
Viskositas
Viskositas fluida merupakan ukuran ketahanan sebuah fluida terhadap deformasi atau perubahan bentuk. Viskositas dipengaruhi oleh temperatur, tekanan, kohesi dan laju perpindahan momentum molekularnya. Viskositas zat cair cenderung menurun dengan seiring bertambahnya kenaikan temperatur hal ini disebabkan gaya – gaya kohesi pada zat cair bila dipanaskan akan mengalami penurunan dengan semakin bertambahnya temperatur pada zat cair yang menyebabkan berturunya viskositas dari zat cair tersebut.
Jenis Aliran pada Fluida
1.Aliran Laminar
2.Aliran Turbulen
3.Aliran Transisi
Nilai Re kurang dari 2100 maka aliran tersebut laminer dan jika Re nya lebih dari 4000 maka aliran tersebut turbulen.
Selanjutnya dilanjutkan dengan pengenalan perangkat lunak CFDSOF.
Geometri yang digunakan berbentuk box. Diberikan tips-tips dari bang Edo bagaimana kita seharusnya membuat mesh tersebut. Untuk kecepatan aliran, karena yang diinginkan adalah aliran laminar, sehinggga disesuaikan dengan bilangan Reynoldnya. Analisis ini juga dikombinasikan dengan penggunaan perangkat luna ParaView untuk visualisasi yang lebih informatif. Berikut ilustrasi-ilustrasi ketika pelaksanaan pengenalan metode analisis ini.
Untuk lebih memahami dan mengerti materi yang telah disampaikan, bang Edo membertikan tugas kita untuk menjawab pertanyaan-pertanyaan berikut;
1. Apa itu entrance region/aliran masuk?
Entrance region merupakan daerah suatu aliran di dekat dimana fluida memasuki pipa.
2. Apa itu aliran berkembang sempurna?
Fully Developed flow merupakan daerah suatu aliran pada pipa dimana profil kecepatan sudah tidak berubah terhadap x.
3. Apa pengaruh viskositas dan pengaruh pressure drop dalam pipa?
Pressure drop merupakan penurunan tekanan pada aliran fluida dan berubah ke dalam bentuk energi lain berupa panas yang disebabkan oleh gesekan dengan dinding pipa. Sementara viskositas yang mempengaruhi dalam memindahkan fluida dikarenakan berpengaruh terhadap profil kecepatan yang ditimbulkan. Dapat dianalogikan seperti perbandingan regangan dan tegangan geser.
4. Bagaimana cara menghitung pressure drop suatu aliran dalam laminar/turbulen?
Cara mengukur pressure drop adalah selisih antara tekanan total fluida masuk dan tekanan total fluida keluar
Ptot = Ps + Pd
Ps = tekanan statis
Pd = tekanan dinamis = 1/2 ρV^2
Pressure drop:
ΔP = Ptot in - Ptot out
Pressure drop dalam aliran laminer:
ΔP = f l/2D ρV^2
f= 64/Re
Pressure drop dalam aliran turbulen:
ΔP = λ l/2D ρV^2
f= 8𝜏/ρV^2
Dimana ΔP = pressure drop (Pa)
l = panjang pipa (m)
D = diameter pipa (m)
V = kecepatan aliran fluida (m/s^2)
Re = bilangan Reynolds
f = friction factors
5. Apa itu entrance length?
Entrance length merupakan jarak antara tempat masuknya aliran dengan titik awal fully developed flow
Pertemuan 2 (Rabu, 1 April 2020)
Pada kelas kali ini kembali dilaksanakan Pendidikan Jarak Jauh dengan bantuan perangkat lunak zoom. Pengisi materi adalah Dr. Ir. Ahmad Indra Siswantara dan asisten dosen beliau, bang Edo. Mula-mula Bpk. Ahmad Indra memaparkan mengenai konsep hukum/prinsip yang banyak digunakan pada mekanika fluida yaitu konservasi massa, konservasi momentum, dan konservasi energi. Dari persamaan-persamaan inilah, persamaan Navier-Stokes diturunkan yang mendeskrpipsikan pergerakan fluida yang dapat banyak kita jumpai pada Dinamika Fluida. Persaman Navier-Stokes menggambarkan hubungan laju perubahan suatu variabel terhadap variabel lain.
- Konservasi Massa
Massa sistem akan selalu konstan dari waktu ke waktu.
dm/dt = 0
Hukum kontinuitas (sebuah fluida inkompresibel, debit masuk harus sama dengan debit keluar) merupakan salah satu penerapannya.
- Konservasi Momentum
Suatu sistem mengalami percepatan bila ada gaya netto atau jumlah gaya tidak sama dengan nol. Sistem akan mengalami perubahan kecepatan (arah dan/atau nilai)
m dV/dt = ΣF
- Konservasi Energi
Apabia sistem energi mengalami perubahan total (laju perubahan energi pada suatu sistem) harus diikuti perubahan dalam bentuk kerja dan panas.
dE/dt = W + Q
Ilmu mekanika fluida komputasional digunakan untuk menyelesaikan persamaan ini. Penggunaannya tergantung dengan asumsi yang digunakan sejak awal. Kemudian beliau mengulas kembali materi yang dijadikan tugas yaitu entrance region, fully developed flow, dan pressure drop.
Berikutnya adalah materi yang disampaikan oleh bang Edo. Bang Edo melanjutkan penjelasan mengenai pemakaian perangkat lunak CFD-SOF. Ada sedikit revisi dengan data yang dimasukkan ke CFD-SOF sebelumnya. Pengunaan grid ternyata juga berperan penting. Diharapkan kita menggunakaan grid yang lebih kecil untuk mendapatkan tampilan grafik yang lebih halus. Berikut adalah dokumentasi pelaksanaan Pendidikan Jarak Jauh dengan penggunaan perangkat lunak zoom.
Di penghujung kelas, disajikan contoh soal yang dapat dikerjakan dengan bantuan perangkat lunak CFD-SOF
Dari soal dapat diperoleh:
Berikut adalah grafik dari perkembangan profil kecepatan yang diperoleh:
Grafik yang ditampilkan hanya profil kecepatan sesuai yang diminta oleh soal
a1:
a2:
Pertemuan 3 (Selasa, 7 April 2020)
Kelas pada pertemuan kali ini, kembali dilaksanakan dengan metode Pendidikan Jarak Jauh (PJJ) dengan bantuan perangkat lunak zoom. Mula-mula, Pak Dai memberika beberapa materi terlebih dahulu. Pada pertemuan sebelumnya sudah dibahas beberapa persamaan/hukum dasar mekanika fluida yang tertuang pada persamaan matematis yang rumit. CFD, yang adalah cabang ilmu mekanika fluida, dapat menjalankan simulasi teknik numerik pada aliran fluida dimana dapat dengan mudah memecahkan masalah tersebut. Dengan demikian, diharapkan kita dapat memprediksi suatu dinamika aliran fluida dengan lebih mudah. Persamaan-persamaan matematis tersebut disebut dengan governing equation. Berikutnya Pak Dai memberikan salah satu contoh yang merupakan governing equation.
Pertemuan 4 (Rabu, 8 April 2020)
Pertemuan 6 (Rabu, 15 April 2020)
Pertemuan 7 (Selasa, 21 April 2020)
Pertemuan 8 (Rabu, 22 April 2020)
Pertemuan 9 (Selasa, 28 April 2020)
Pertemuan 10 (Rabu, 29 April 2020)
Pertemuan 11 (Selasa, 5 Mei 2020)
Pertemuan 12 (Rabu, 6 Mei 2020)
Soal-jawab Mekanika Fluida
Pengenalan Aliran Viscous dan Pengamatan Aliran Fluida dengan Pendekatan Analitikal
Aliran dapat mengalir pada plat datar, plat paralel, tempat terbuka, dan lain-lain. Tentu penggunaannya tergantung pada pemakaian dan kondisi. Yang akan kita bahas kali ini adalah aliran fluida pada plat paralel yang sekarang dapat kita asumsikan sebagai sebuah pipa. Aliran yang mengalir pada kondisi wadah-wadah seperti diatas dapat dibagi menjadi 3 jenis, yaitu aliran laminar, aliran transisi dan aliran turbulen. Kita dapat mengidentifikasikan jenis tersebut dari yang disebut Bilangan Reynolds. Bilangan Reynolds dapat dilogikakan sebagai rasio antara gaya inersia dengan gaya viskositasnya. Aliran turbulen didapat pada Bilangan Reynolds dibawah 2300, Aliran transisi pada 2300 – 4000, dan aliran turbulen pada Bilangan Reynolds lebih dari 4000. Aliran laminar dan aliran turbulent pun memiliki penggunaannya masing-masing. Pada suatu material fluida, kita dapat memperoleh kondisi jenis aliran dengan pengaturan kecepatannya, karena tentu viskositasnya tidak berubah. Solusi lain adalah dengan penggunaan material yang lain apabila kondisi tidak memungkinkan. Pendekatan analitikal pada pengamatan aliran fluida adalah dengan menggunakan persamaan-persamaan matematika non linear yang cukup rumit. Kita dapat menggunakan metode Governing Equation yang dapat ditemukan pada hukum konservasi momentum, konservasi energi, dan konservasi massa yang menjadi dasar pada mekanika fluida. Pada aliran di antara plat paralel, kita dapat mengasumsikan kecepatan partikel fluida yang menyentuh plat=0 atau mendekatinya (no slip boundary condition) yang diakibatkan oleh gaya antar molekul. Hal ini dapat mempermudah kita dalam perhitungan saat menggunakan boundary condition.
Setiap material fluida akan berbeda-beda datanya untuk membentuk suatu jenis aliran. Pada suatu material fluida akan memiliki apa yang dinamakan “Critical Velocity” disinilah titik yang memisahkan dimana lapisan bergerak membentuk viscous/streamline flow dan apabila mulai melebihi, partikel fluida akan mulai bergerak secara acak dan gerakan lapisan-lapisan secara paralel akan mulai berpancar.
Memahami penggunaan perangkat lunak berbasis CFD
Setelah kita memahami pengamatan dengan pendekatan analitikal, selanjutnya kita juga dapat melakukannya dengan bantuan perangkat lunak. CFD, yang merupakan cabang ilmu mekanika fluida, dapat menjalankan simulasi teknik numerik pada aliran fluida dimana dapat dengan mudah memecahkan masalah tersebut. Dengan demikian, diharapkan kita dapat memprediksi suatu dinamika aliran fluida dengan lebih mudah. Persamaan-persamaan matematis tersebut disebut dengan governing equation. Kita dapat mengamati bahwa profil kecepatan menunjukkan kecepatan akan selalu setidaknya paling tinggi pada titik vertikal di tengah pipa dibandingkan pada titik vertikal lainnya. Sementara pada bagian fluida yang bersentuhan dengan plat akan memiliki kecepatan=0 saat sudah mendapatkan kondisi aliran berkembang penuh. Kita juga dapat menganalisis pressure drop yang timbul. Pendekatan dengan pemodelan CFD banyak digunakan perusahaan-perusahaan demi mempersingkat waktu dan biaya operasional perusahaan. Dengan penggunaan ini, perusahaan bisa dengan cepat dan efektif dalam memprediksi suatu fenomena. Sebagai ilustrasi:
Tugas Besar: Penggunaan Ilmu Mekanika Fluida pada Desain Peluru Kendali
Pertahanan merupakan salah satu indikator dari negara yang kuat. Diperlukan alutsista (alat utama sistem persenjataan) dan sumber daya manusia terbaik untuk menunjangnya. Indonesia sendiri sedang membangun kekuatan alutsista yang mandiri. Salah satunya adalah pada pengembangan peluru kendali. Teknologi rudal menjadi bagian dalam tujuh prioritas kemandirian alutsista Indonesia. Pada tugas besar mata kuliah Mekanika Fluida untuk semester ini, saya akan membuat analisis aliran eksternal di sekitar peluru kendali untuk mengoptimalisasi fungsi. Analisis dengan pendekatan numerik digunakan untuk mempermudah perhitungan yang kompleks.