Skandha M Rajasingam

From ccitonlinewiki
Revision as of 11:48, 12 November 2019 by Skandha (talk | contribs)
Jump to: navigation, search

Profil

Nama: Skandha M Rajasingam

NPM: 1706036532

Jurusan: Teknik Mesin

MEETING 1

METODE NUMERIK Metode Numerik merupakan teknik untuk memformulasikan sebuah rumus matematika agar dapat dipecahkan menggunakan operasi perhitungan biasa. Metode numerik krusial untuk pemecahan permasalahan yang tidak dapat diselesaikan melalu metode exact. Metode numerik dalam bidang computer menjadi fokus dalam bidang pelajaran semester ini. salah satu metode numerik yang dipakai pada pertemuan ini adalah Taylor's Method.

Taylor's Method Taylor's Method merupakan representasi sebuah fungsi sebagai jumlahan tak hingga dari suku suku yang nilainya dihitung dari turunan fungsi tersebut fungsi Utama dari Taylor's Method dalam pembelajaran ini adalah untuk meng aproksimasikan nilai dari sebuah fungsi. dalam kasus ini mengaproksimasikan nilai dari Sin(pi/7).

Penggunaan Taylor's Method dalam pencarian nilai SIN











MEETING 2

BAHASA PEMROGRAMAN Dalam dunia engineering, pemrograman bukanlah sesuatu yang asing. di segala sudut dan bidang engineering kita sudah bisa melihat implementasi dari program computer. Oleh karena itu, pengetahuan tentang berbagai macam Bahasa pemrograman serta aplikasinya dalam dunia kerja adalah sesuatu yang sangat penting di dunia yang modern ini. Pada kesempatan ini, bahasa pemrograman yang kami pelajari adalah C++. alasan kami memilih bahasa pemrograman C++ adalah fleksibilitas bahasa tersebut. Bahasa tersebut kompatibel dengan banyak sistem dan perangkat dari berbagai bidang.

PSEUDO CODE Sebelum kami mulai mempelajari pemrograman C++, kami diberi tugas untuk menulis pseudo-code sebuah program sederhana. Dalam kasus ini program tersebut adalah program Maclaurin Series. Program ini mampu menghitung nilai dari sin(x), cos(x), serta derajat akurasi yang dibutuhkan. pseudo-code dimulai dengan menulis variabel-variabel yang dibutuhkan dalam program tersebut. Langkah kedua adalah dengan menulis parameter yang dibutuhkan,dalam kasus ini parameter yang dibutuhkan ialah error= 1e-7. langkah ke 3 adalah untuk menetapkan rasio yang akan dipakai untuk mencapai nilai yang dibutuhkan. langkah ke 4 adalah untuk menetapkan pertambahan gradual dari suku pertama ke suku selanjutnya. Setelah pseudo-code selesai, kertas dikumpulkan ke dosen kelas.


MEETING SETELAH UTS

MEETING 1

Pada meeting pertama, kami diberikan introduction ke Python, yaitu programming language yang sekarang paling banyak digunakan oleh programmer di dunia modern. Python paling banyak digunakan pada masa ini untuk mendevelop AI, Image Processing, System Utility, serta GUI. salahs atu dari kelebihan yang python miliki ialah memiliki user interface yang lebih streamlined sehingga lebih mudah untuk ditulis dan dibaca. selain itu python memiliki kemampuan untuk langsung menginterpret program dan memberikan output. Python memiliki IDE yang lumayan beragam seperti spyder dan pycharm. pada saat ini saya menggunakan Pycharm. python, C++, dan pascal adalah Bahasa pemrograman yang intinya sama, yaitu untuk mengkomunikasikan sebuah ide atau penyelasaian permasalahan.

Tugas yang kami berikan kali ini adalah untuk mencari Top speed serta waktu yang dibutuhkan untuk mencapai top speed dari sebuah mobil. untuk mendapatkan nilai tersebut kami harus menggunakan Teknik Runge Kutta, sebuah Teknik numerik untuk mencari nilai dari turunan sebuah fungsi. dimulai dengan cara mencari governing equation.

TUGAS 1: GOVERNING EQUATION

Berikut merupakan governing equation untuk mobil yang sedang bergerak serta gaya yang berlaku pada mobil tersebut.

Governing equation for a moving car









dari Analisa gaya tersebut program yang kami formulasikan dalam python seperti berikut:

import math
import cmath
m= float(input("massa mobil: "))
Cd= float(input("Koefisien Drag Udara: "))
Myu= float(input("koefisien gesek dinamis: "))
F = float(input("Engine's Force: "))
g= float(9.18)     #gravitational_acceleration
N = float(m*g)      #Normal_Force
V0 = float(0)       #inital_speed_value2
t0 = float(0) #initial time_value
H = 1 #step_size
Error = float(100)
print ("data data runge kutta: ")
 def Va(t0, V0):
   return ((F)-(Cd*V0**(2/3)-Myu*N)/m)
 while(Error>0.0005):
   k1 = Va(t0, V0)
   k2 = Va(t0 + 0.5, V0 + k1*0.5)
   k3 = Va(t0 + 0.5, V0 + k2*0.5)
   k4 = Va(t0 + 1, V0 + k3)
   V1 = V0 + (1/6)*(k1 + 2*k2 + 3*k3 + k4)
   Error = ((V1 - V0) / V1)
   V0 = V1
   t1 = t0 + H
   t0 = t1
   print (V1)
print ("")
print ("kecepatan max mobil merupakan: ", V1)
print ("waktu ke top speed: ", t0)