Calvin rahmat pratama
Biodata Diri
Nama: Calvin Rahmat Pratama
NPM: 1806200974
Tempat,tanggal lahir: Batam,14 Oktober 2000
Hobi: Gaming dan Golf
Saya adalah mahasiswa FTUI angkatan 2018 dari jurusan Teknik mesin dan saya adalah salah satu ciptaan terbaik dari Tuhan yang Maha Esa karena pada prinsipnya Tuhan yang Maha Esa itu mendesain manusia dengan sebaik baiknya makhluk.
Teknik Mesin merupakan program studi yang saya gemari dikarenakan ayah saya juga merupakan lulusan Teknik Mesin.
Contents
- 1 Biodata Diri
- 2 Tujuan Pembelajaran
- 3 Metode Numerika
- 4 Tugas Minggu 1
- 5 Review Minggu 1
- 6 Review Minggu 2
- 7 Tugas Minggu 2
- 8 Review Minggu 3
- 9 Tugas Minggu 3
- 10 Fungsi Panggilan
- 11 Kuis 1 Metode Numerik
- 12 Tugas 4
- 13 Pertemuan 16/12/2020
- 14 Tugas Besar Metode Numerik
- 15 UAS
- 16 Kinematika
- 17 Fluida Statis
Tujuan Pembelajaran
1. Memahami konsep dengan dengan baik tentang dasar-dasar metode numerik.
2. Mampu menerapkan pemahaman konsep tersebut didalam permodelan numerik.
3. Mampu menerapkan metode numerik dipersoalan keteknikan.
4. Sebagai nilai tambah bagi saya agar menjadi manusia yang beradab seperti pada Sila ke-2 Pancasila.
Metode Numerika
Sejauh ini yang dapat saya ketahui dalam metode numerika adalah metode numerika dapat menyelesaikan permasalahan yang tidak dapat diselesaikan oleh metoda analisis saya juga mempelajari cara menggunakan excel untuk menyelesaikan beberapa permasalahan metode numerika. Seperti menggunakan psuedocode dan metode newton rhapson.
Tugas Minggu 1
Review Minggu 1
Untuk pertemuan pertama saya mempelajari cara menggunakan OpenModelica dimulai dari persamaan yang cukup sederhana, OpenModelica sendiri merupakan aplikasi penghitungan permodelan yang lumayan kompleks, sehingga OpenModelica itu sendiri sangat membantu saat menyelesaikan permodelan masalah mulai dari yang cukup mudah sampai ke cukup kompleks
Review Minggu 2
Alasan mengapa menggunakan openmodelica dibanding aplikasi lainnya
- Secara penggunanaan lebih digunakan untuk permodelan bukan untuk programming
- Didalam melakukan perhitungan kode yang diinput di modelica itu di terjemahkan ke Bahasa C dan kemudian diterjemahkan lagi ke Bahasa permesinan sehingga bisa melakukan perhitungan permodelan
- Paling penting adalah openmodelica itu gratis
Pada pertemuan kedua saya juga mempelajari menggunakan modelica untuk "memanggil" fungsi. Pada pertemuan kedua juga mempelajari mengenai Fungsi tambah yang mana terlebih dahulu dari permodelan masalah di translasi kan terlebih dahulu ke dalam bahasa C++ yang nantinya akan di proses menjadi data-data perhitungan.
Tugas Minggu 2
Review Minggu 3
Pada minggu ke tiga ini saya mencoba untuk mempelajari kembali untuk membuat fungsi modelica 9x12 dengan metode gauss atau menggunakan metode lain, kemudian mencoba mengimplementasikan psuedocode pada Figure 9.4 di modelica yang mana nantinya akan di test coding dengan example 9.5.
Tugas Minggu 3
model Trusses parameter Integer N=10; //Global matrice = 2*points connected parameter Real A=8; parameter Real E=1.9e6; Real G[N,N]; //global Real Ginitial[N,N]; //global Real Sol[N]; //global dispplacement Real X[N]={0,0,0,0,0,0,0,-500,0,-500}; Real R[N]; //global reaction force Real SolMat[N,1]; Real XMat[N,1];
//boundary coundition Integer b1=1; Integer b2=3;
//truss 1 parameter Real X1=0; //degree between truss Real k1=A*E/36; Real K1[4,4]; //stiffness matrice Integer p1a=1; Integer p1b=2; Real G1[N,N];
//truss 2 parameter Real X2=135; //degree between truss Real k2=A*E/50.912; Real K2[4,4]; //stiffness matrice Integer p2a=2; Integer p2b=3; Real G2[N,N];
//truss 3 parameter Real X3=0; //degree between truss Real k3=A*E/36; Real K3[4,4]; //stiffness matrice Integer p3a=3; Integer p3b=4; Real G3[N,N];
//truss 4 parameter Real X4=90; //degree between truss Real k4=A*E/36; Real K4[4,4]; //stiffness matrice Integer p4a=2; Integer p4b=4; Real G4[N,N]; //truss 5 parameter Real X5=45; //degree between truss Real k5=A*E/50.912; Real K5[4,4]; //stiffness matrice Integer p5a=2; Integer p5b=5; Real G5[N,N];
//truss 6 parameter Real X6=0; //degree between truss Real k6=A*E/36; Real K6[4,4]; //stiffness matrice Integer p6a=4; Integer p6b=5; Real G6[N,N];
/* for each truss, please ensure pXa is lower then pXb (X represents truss element number) */
algorithm
//creating global matrice K1:=Matrices(X1); G1:=k1*GlobalMatrices(K1,N,p1a,p1b);
K2:=Matrices(X2); G2:=k2*GlobalMatrices(K2,N,p2a,p2b);
K3:=Matrices(X3); G3:=k3*GlobalMatrices(K3,N,p3a,p3b);
K4:=Matrices(X4); G4:=k4*GlobalMatrices(K4,N,p4a,p4b);
K5:=Matrices(X5); G5:=k5*GlobalMatrices(K5,N,p5a,p5b);
K6:=Matrices(X6); G6:=k6*GlobalMatrices(K6,N,p6a,p6b);
G:=G1+G2+G3+G4+G5+G6; Ginitial:=G;
//implementing boundary condition for i in 1:N loop G[2*b1-1,i]:=0; G[2*b1,i]:=0; G[2*b2-1,i]:=0; G[2*b2,i]:=0; end for;
G[2*b1-1,2*b1-1]:=1; G[2*b1,2*b1]:=1; G[2*b2-1,2*b2-1]:=1; G[2*b2,2*b2]:=1;
//solving displacement Sol:=Gauss_Jordan(N,G,X);
//solving reaction force SolMat:=matrix(Sol); XMat:=matrix(X); R:=Reaction_Matrices(N,Ginitial,SolMat,XMat);
end Trusses;
Fungsi Panggilan
Matriks function Matrices input Real A; protected Real Y; public output Real X[4,4]; protected Real float_error = 10e-10; protected final constant Real pi=2*Modelica.Math.asin(1.0);
algorithm
Y:=A/180*pi; X:=[(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)* Modelica.Math.sin(Y),-(Modelica.Math.cos(Y))^2, -Modelica.Math.cos(Y)*Modelica.Math.sin(Y);
Modelica.Math.cos(Y)*Modelica.Math.sin(Y), (Modelica.Math.sin(Y))^2, -Modelica.Math.cos(Y)*Modelica.Math.sin(Y), -(Modelica.Math.sin(Y))^2;
-(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y) *Modelica.Math.sin(Y),(Modelica.Math.cos(Y))^2, Modelica.Math.cos(Y)*Modelica.Math.sin(Y);
-Modelica.Math.cos(Y)*Modelica.Math.sin(Y), -(Modelica.Math.sin(Y))^2, Modelica.Math.cos(Y)*Modelica.Math.sin(Y), (Modelica.Math.sin(Y))^2];
for i in 1:4 loop for j in 1:4 loop if abs(X[i,j]) <= float_error then X[i,j] := 0; end if; end for; end for;
end Matrices;
Global Matriks
function GlobalMatrices
input Real Y[4,4]; input Integer B; input Integer p1; input Integer p2; output Real G[B,B];
algorithm
for i in 1:B loop for j in 1:B loop G[i,j]:=0; end for; end for;
G[2*p1,2*p1]:=Y[2,2]; G[2*p1-1,2*p1-1]:=Y[1,1]; G[2*p1,2*p1-1]:=Y[2,1]; G[2*p1-1,2*p1]:=Y[1,2];
G[2*p2,2*p2]:=Y[4,4]; G[2*p2-1,2*p2-1]:=Y[3,3]; G[2*p2,2*p2-1]:=Y[4,3]; G[2*p2-1,2*p2]:=Y[3,4];
G[2*p2,2*p1]:=Y[4,2]; G[2*p2-1,2*p1-1]:=Y[3,1]; G[2*p2,2*p1-1]:=Y[4,1]; G[2*p2-1,2*p1]:=Y[3,2];
G[2*p1,2*p2]:=Y[2,4]; G[2*p1-1,2*p2-1]:=Y[1,3]; G[2*p1,2*p2-1]:=Y[2,3]; G[2*p1-1,2*p2]:=Y[1,4];
end GlobalMatrices;
Reaction Matrices
function Reaction_Matrices input Integer N; input Real A[N,N]; input Real B[N,1]; input Real C[N,1]; protected Real X[N,1]; public output Real Sol[N]; protected Real float_error = 10e-10;
algorithm X:=A*B-C;
for i in 1:N loop if abs(X[i,1]) <= float_error then X[i,1] := 0; end if; end for;
for i in 1:N loop Sol[i]:=X[i,1]; end for;
end Reaction_Matrices;
Gauss Jordan
input Integer N; input Real A[N,N]; input Real B[N]; output Real X[N]; Real float_error = 10e-10;
algorithm X:=Modelica.Math.Matrices.solve(A,B);
for i in 1:N loop if abs(X[i]) <= float_error then X[i] := 0; end if; end for;
end Gauss_Jordan;
|}
Kuis 1 Metode Numerik
Tugas 4
class truss_3d_try //define initial variable parameter Integer Points=4; //Number of Points parameter Integer Trusses=3; //Number of Trusses parameter Real Area=0.0015; //Area parameter Real Elas=70e9; //Elasticity
//define connection parameter Integer C[Trusses,2]=[1,2; 1,3; 1,4]; //define coordinates (please put orderly) parameter Real P[Points,3]=[2,0,0; 0,0,1.5; 0,0,-1.5; 0,1.5,0];
//define external force (please put orderly) parameter Real F[Points*3]={0,-5000,0, 0,0,0, 0,0,0, 0,0,0};
//define boundary parameter Integer b[:]={2,3,4};
//solution Real displacement[N], reaction[N];
protected parameter Integer N=3*Points; Integer boundary[3*size(b,1)]=cat(1,(3*b).-2,(3*b).-1,3*b); Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), err=10e-10, cx, cy, cz, L, X[3,3];
algorithm //Creating Global Matrix G:=id; for i in 1:Trusses loop for j in 1:3 loop q1[j]:=P[C[i,1],j]; q2[j]:=P[C[i,2],j]; end for; //Solving Matrix L:=Modelica.Math.Vectors.length(q2-q1); cx:=(q2[1]-q1[1])/L; cy:=(q2[2]-q1[2])/L; cz:=(q2[3]-q1[3])/L; X:=(Area*Elas/L)*[cx^2,cx*cy,cx*cz; cy*cx,cy^2,cy*cz; cz*cx,cz*cy,cz^2];
//Transforming to global matrix g:=zeros(N,N); for m,n in 1:3 loop g[3*(C[i,1]-1)+m,3*(C[i,1]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,2]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,1]-1)+n]:=-X[m,n]; g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n]; end for; G_star:=G+g; G:=G_star; end for;
//Implementing boundary for i in boundary loop for j in 1:N loop G[i,j]:=id[i,j]; end for; end for;
//Solving displacement displacement:=Modelica.Math.Matrices.solve(G,F);
//Solving reaction reaction:=(G_star*displacement)-F;
//Eliminating float error for i in 1:N loop reaction[i]:=if abs(reaction[i])<=err then 0 else reaction[i]; displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i]; end for; end truss_3d_try;
Pertemuan 16/12/2020
Aplikasi Metode Numerik Dalam Kasus Optimasi
Bracket Optimization Using the Golden Ratio Ada Satu Grafik Fungsi Yang Memiliki Nilai F(X) Global Maksimum Dan Lokal Maksimum Serta F(X) Global Minimum Dan Lokal Minimum
Menentukan Global Maksimum dengan cara melakukan optimasi dengan nilai X untuk mendapatkan F(X) Maksimum
1. Menentukan batasan titik awal terendah (xL) dan tertinggi (xH)
2. Mendapatkan nilai x1 dan x2 dari golden ratio (d)
3. Menentukan xL dan xH berdasarkan nilai batasan maksimum dan minimal baru
4. Mendapatkan nilai x1 dan x2 baru
f(x1)>f(x2)
domain x disebelah kiri x2 dapat dieliminasi
xL=x2 untuk iterasi berikutnya
xu=xu lama
f(x2)>f(x1)
Domain x disebelah kanan x1 dapat dieliminasi
xu=x1 untuk iterasi berikutnya
xL=xL lama
Perhitungan Excel
Tugas Besar Metode Numerik
Tema:
-Aplikasi Metoda Numerik dalam Optimasi Desain Struktur Rangka Sederhana
Sinopsis:
Plotting:
-Beban hanya akan terdistribusi pada node
-Memiliki nilai Safety Factor minimal 2
-Memiliki Batas Displacement sekitar 0.0001 m (truss paling atas)
-Ketinggian pada masing masing sama yaitu 0.6m
Data
Program
Program penghitungan pada Displacement,Reaction Force,Stress dan Safety Factor
model Tugas_Besar_Calvin
//define initial variable parameter Integer Points=size(P,1); //Number of Points parameter Integer Trusses=size(C,1); //Number of Trusses parameter Real Yield=170e6; //Yield Strength (Pa) parameter Real Area=0.09632; //Area L Profile (Dimension=0.04, Thickness=0,003) (m2) parameter Real Elas=193e9; //Elasticity SS 316L (Pa)
//define connection parameter Integer C[:,2]=[1,5; 2,6; 3,7; 4,8; 5,6; //1st floor 6,7; //1st floor 7,8; //1st floor 5,8; //1st floor 5,9; 6,10; 7,11; 8,12; 9,10; //2nd floor 10,11;//2nd floor 11,12;//2nd floor 9,12; //2nd floor 9,13; 10,14; 11,15; 12,16; 13,14;//3rd floor 14,15;//3rd floor 15,16;//3rd floor 13,16];//3rd floor //define coordinates (please put orderly) parameter Real P[:,6]=[0.3,-0.375,0,1,1,1; //1 -0.3,-0.375,0,1,1,1; //2 -0.3,0.375,0,1,1,1; //3 0.3,0.375,0,1,1,1; //4 0.3,-0.375,0.6,0,0,0; //5 -0.3,-0.375,0.6,0,0,0; //6 -0.3,0.375,0.6,0,0,0; //7 0.3,0.375,0.6,0,0,0; //8 0.3,-0.375,1.2,0,0,0; //9 -0.3,-0.375,1.2,0,0,0; //10 -0.3,0.375,1.2,0,0,0; //11 0.3,0.375,1.2,0,0,0; //12 0.3,-0.375,1.8,0,0,0; //13 -0.3,-0.375,1.8,0,0,0; //14 -0.3,0.375,1.8,0,0,0; //15 0.3,0.375,1.8,0,0,0]; //16 //define external force (please put orderly) parameter Real F[Points*3]={0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,-500, 0,0,-1000, 0,0,-1000, 0,0,-500};
//solution Real displacement[N], reaction[N]; Real check[3];
Real stress1[Trusses]; Real safety[Trusses]; Real dis[3]; Real Str[3]; protected parameter Integer N=3*Points; Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), cx, cy, cz, L, X[3,3]; Real err=10e-10, ers=10e-4;
algorithm //Creating Global Matrix G:=id; for i in 1:Trusses loop for j in 1:3 loop q1[j]:=P[C[i,1],j]; q2[j]:=P[C[i,2],j]; end for; //Solving Matrix L:=Modelica.Math.Vectors.length(q2-q1); cx:=(q2[1]-q1[1])/L; cy:=(q2[2]-q1[2])/L; cz:=(q2[3]-q1[3])/L; X:=(Area*Elas/L)*[cx^2,cx*cy,cx*cz; cy*cx,cy^2,cy*cz; cz*cx,cz*cy,cz^2];
//Transforming to global matrix g:=zeros(N,N); for m,n in 1:3 loop g[3*(C[i,1]-1)+m,3*(C[i,1]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,2]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,1]-1)+n]:=-X[m,n]; g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n]; end for;
G_star:=G+g; G:=G_star; end for;
//Implementing boundary for x in 1:Points loop if P[x,4] <> 0 then for a in 1:Points*3 loop G[(x*3)-2,a]:=0; G[(x*3)-2,(x*3)-2]:=1; end for; end if; if P[x,5] <> 0 then for a in 1:Points*3 loop G[(x*3)-1,a]:=0; G[(x*3)-1,(x*3)-1]:=1; end for; end if; if P[x,6] <> 0 then for a in 1:Points*3 loop G[x*3,a]:=0; G[x*3,x*3]:=1; end for; end if; end for;
//Solving displacement displacement:=Modelica.Math.Matrices.solve(G,F);
//Solving reaction reaction:=(G_star*displacement)-F;
//Eliminating float error for i in 1:N loop reaction[i]:=if abs(reaction[i])<=err then 0 else reaction[i]; displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i]; end for;
//Checking Force check[1]:=sum({reaction[i] for i in (1:3:(N-2))})+sum({F[i] for i in (1:3:(N-2))}); check[2]:=sum({reaction[i] for i in (2:3:(N-1))})+sum({F[i] for i in (2:3:(N-1))}); check[3]:=sum({reaction[i] for i in (3:3:N)})+sum({F[i] for i in (3:3:N)}); for i in 1:3 loop check[i] := if abs(check[i])<=ers then 0 else check[i]; end for;
//Calculating stress in each truss for i in 1:Trusses loop for j in 1:3 loop q1[j]:=P[C[i,1],j]; q2[j]:=P[C[i,2],j]; dis[j]:=abs(displacement[3*(C[i,1]-1)+j]-displacement[3*(C[i,2]-1)+j]); end for; //Solving Matrix L:=Modelica.Math.Vectors.length(q2-q1); cx:=(q2[1]-q1[1])/L; cy:=(q2[2]-q1[2])/L; cz:=(q2[3]-q1[3])/L; X:=(Elas/L)*[cx^2,cx*cy,cx*cz; cy*cx,cy^2,cy*cz; cz*cx,cz*cy,cz^2]; Str:=(X*dis); stress1[i]:=Modelica.Math.Vectors.length(Str); end for;
//Safety factor for i in 1:Trusses loop if stress1[i]>0 then safety[i]:=Yield/stress1[i]; else safety[i]:=0; end if; end for;
end Tugas_Besar_Calvin;
Curve Fitting
function Kurva
input Real X[:]; input Real Y[size(X,1)]; input Integer order=2; output Real Coe[order+1];
protected Real Z[size(X,1),order+1]; Real ZTr[order+1,size(X,1)]; Real A[order+1,order+1]; Real B[order+1];
algorithm
for i in 1:size(X,1) loop for j in 1:(order+1) loop Z[i,j]:=X[i]^(order+1-j); end for; end for; ZTr:=transpose(Z);
A:=ZTr*Z; B:=ZTr*Y; Coe:=Modelica.Math.Matrices.solve(A,B);
end Kurva;
Gold Optimization
model Gold_Opt
parameter Real xd[:]; parameter Real yd[size(xd,1)]; parameter Real xlo=64e-6; parameter Real xhi=215e-6; parameter Integer N=10; // maximum iteration parameter Real es=0.0001; // maximum error
Real f1[N], f2[N], x1[N], x2[N], ea[N], y[3]; Real xopt, fx; protected Real d, xl, xu, xint, R=(5^(1/2)-1)/2;
algorithm xl := xlo; xu := xhi; y := Kurva(xd,yd); for i in 1:N loop d:= R*(xu-xl); x1[i]:=xl+d; x2[i]:=xu-d; f1[i]:=y[1]*x1[i]^2+y[2]*x1[i]+y[3]; f2[i]:=y[1]*x2[i]^2+y[2]*x2[i]+y[3]; xint:=xu-xl; if f1[i]>f2[i] then xl:=x2[i]; xopt:=x1[i]; fx:=f1[i]; else xu:=x1[i]; xopt:=x2[i]; fx:=f2[i]; end if; ea[i]:=(1-R)*abs((xint)/xopt); if ea[i]<es then break; end if; end for;
end Gold_Opt;
Hasil
Kesimpulan Dengan penggunaan luas area sebsar 171 mm^2 atau material siku 40x40 dengan thickness 3mm, maka material yang paling optimal untuk digunakan adalah material dengan tingkat elastisitas sebesar 193 GPa
Material yang terletak dalam range elastisitas ini adalah material SS316L dengan tingkat elasitisas sama dengan nilai optimal yaitu 193 GPa.
UAS
Kinematika
Kinematika merupakan bagian dari mekanika yang mempelajari tentang gerak pada suatu benda tanpa mempertimbangkan penyebab benda itu bergerak. Benda dikatakan bergerak apabila mengalami perubahan posisi dari titik acuannya.
Rumus Terkait
Gerak Lurus
1.Perpindahan (As)
Yaitu perubahan posisi awal so ke posisi akhir s, berlaku:
Delta s = S-So
2. Kecepatan dan Kelajuan Rata-Rata
Dua jenis kecepatan yaitu:
Kecepatan Rata-rata (v) perpindahan
V= perpindahan/waktu=Delta s/Delta t= S-So/t-to
Kelajuan Rata-rata (v)
V= jarak/Waktu= s/t
Kecepatan Sesaat(V)
V= ds/dt
3. Percepatan
Yaitu perubahan kecepatan benda dalam selang waktu tertentu.
Percepatan Rata-rata
a=Delta v/Delta t= v-vo/t-to
Percepatan Sesaat
a=dv/dt
4.Gerak Lurus Beraturan (GLB)
Yaitu Gerak benda pada lintasan lurus dengan kecepatan konstan dengan
percepatan = 0.
Fluida Statis
Hasil diskusi dengan ChatGPT
Apa itu Fluida Statis
Fluida statis adalah fluida yang diam, artinya tidak bergerak atau mengalir. Istilah "statis" mengacu pada fakta bahwa fluida berada dalam keadaan setimbang, yang berarti bahwa gaya yang bekerja pada titik tertentu dalam fluida seimbang.
Dalam fluida statis, tekanan pada titik tertentu di dalam fluida adalah sama ke segala arah. Ini dikenal sebagai hukum Pascal, yang menyatakan bahwa tekanan yang diterapkan pada fluida dalam wadah tertutup diteruskan secara merata ke segala arah.
Perilaku fluida statis diatur oleh prinsip hidrostatika, yang merupakan cabang mekanika fluida yang berhubungan dengan fluida diam. Hidrostatik melibatkan studi tentang tekanan, kepadatan, dan gravitasi yang berhubungan dengan cairan saat istirahat.
Beberapa konsep kunci dalam hidrostatik meliputi:
Tekanan: Gaya per satuan luas yang diberikan oleh fluida pada permukaan. Satuan SI untuk tekanan adalah Pascal (Pa), yang sama dengan satu Newton per meter persegi. Daya apung : Gaya ke atas yang dikerjakan oleh fluida pada benda yang terbenam di dalamnya. Gaya ini sama dengan berat fluida yang dipindahkan oleh benda. Prinsip Archimedes: Gaya apung pada benda yang dicelupkan ke dalam fluida sama dengan berat fluida yang dipindahkan oleh benda tersebut. Tekanan hidrostatik: Tekanan yang diberikan oleh fluida pada kedalaman tertentu, yang meningkat dengan bertambahnya kedalaman karena berat fluida di atasnya. Aplikasi hidrostatik termasuk desain bendungan, lift hidrolik, dan kapal selam, serta studi tentang tekanan atmosfer dan perilaku cairan dalam tubuh manusia.
Apa yang dimaksud dengan Manometer
Manometer adalah alat yang digunakan untuk mengukur tekanan, biasanya dalam cairan. Ini terdiri dari tabung berbentuk U yang diisi dengan cairan, biasanya merkuri atau air, dan sumber tekanan diterapkan ke salah satu ujung tabung, sedangkan ujung lainnya terbuka ke atmosfer atau tekanan referensi.
Ketika tekanan diterapkan pada salah satu ujung tabung, cairan di lengan tabung itu naik, menciptakan perbedaan ketinggian cairan antara kedua lengan tabung. Perbedaan tingkat cairan sesuai dengan perbedaan tekanan antara dua titik yang diukur.
Perbedaan ketinggian antara kedua lengan tabung sebanding dengan perbedaan tekanan, menurut persamaan:
∆P = ρgh
di mana ΔP adalah perbedaan tekanan, ρ adalah densitas fluida dalam manometer, g adalah percepatan gravitasi, dan h adalah perbedaan ketinggian antara dua level fluida.
Manometer umumnya digunakan dalam berbagai aplikasi, termasuk mengukur tekanan dalam pipa, tangki, dan sistem HVAC. Mereka juga digunakan untuk mengukur perbedaan tekanan kecil dalam percobaan dan penelitian ilmiah.
Selain manometer tabung-U, ada jenis manometer lain, termasuk manometer tabung miring dan manometer digital, yang menggunakan sensor elektronik untuk mengukur tekanan.
‘’’Dapatkah kondisi lingkungan mempengaruhi bacaan dalam manometer’’’
Ya, kondisi lingkungan pasti dapat mempengaruhi pembacaan manometer. Manometer adalah instrumen sensitif yang mengukur perbedaan tekanan antara dua titik. Setiap perubahan dalam kondisi lingkungan dapat menyebabkan perbedaan tekanan yang diukur berubah, yang dapat menyebabkan pembacaan yang tidak akurat. Berikut adalah beberapa cara di mana kondisi lingkungan dapat mempengaruhi pembacaan manometer:
1.Temperatur: Perubahan temperatur dapat mempengaruhi volume gas di dalam tabung manometer, yang dapat mengubah ketinggian cairan di dalam tabung sehingga mempengaruhi pembacaan.
2.Tekanan atmosfer: Perubahan tekanan atmosfer juga dapat memengaruhi pembacaan manometer. Perubahan tekanan atmosfer dapat menyebabkan perbedaan tekanan yang diukur berubah, menghasilkan pembacaan yang berbeda.
3.Kelembaban: Perubahan kelembaban dapat menyebabkan penguapan atau penyerapan cairan di dalam tabung manometer, yang dapat mengubah volume gas di dalam tabung dan mempengaruhi pembacaan.
4.Getaran dan guncangan mekanis: Setiap getaran atau guncangan mekanis dapat menyebabkan cairan di dalam tabung manometer bergerak, menyebabkan pembacaan yang tidak akurat.
Untuk mendapatkan pengukuran yang akurat dengan manometer, penting untuk memastikan bahwa kondisi lingkungan dikendalikan dan memperhitungkan potensi sumber kesalahan.
Densitas dan viskositas fluida yang diukur: Jika densitas dan viskositas fluida yang diukur berubah karena suhu, tekanan, atau kelembapan, hal ini dapat memengaruhi keakuratan pembacaan manometer.