Metnum03-Muhammad Afdhal Pradisto

From ccitonlinewiki
Revision as of 13:17, 4 January 2021 by Muhammad Afdhal Pradisto (talk | contribs) (Tugas Besar)
Jump to: navigation, search

بِسْمِ اللّهِ الرَّحْمَنِ الرَّحِيْ

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ

BIODATA DIRI

Nama : Muhammad Afdhal Pradisto

NPM : 1806181703

Fakultas/ Jurusan : Teknik/ Teknik Mesin

Tempat dan Tanggal Lahir : Jakarta, 11 Oktober 2000

Afdhal.jpg

Pertemuan 1: 9 November 2020

Assalamualaikum wr. Wb. Perkenalkan nama saya Muhammad Afdhal Pradisto dari kelas Metode Numerik 03. Pada pertemuan ini saya akan menjelaskan apa yang sudah saya pelajari tentang Metode Numerik sebelum UTS. Metode Numerik ini digunakan karena banyak permasalahan matematis tidak dapat diselesaikan menggunakan metode analitik.

Keuntungan dari Metode Numerik:

1. Solusi persoalan selalu dapat diperoleh.

2. Dengan bantuan komputer, perhitungan dapat dilakukan dengan cepat serta hasil yang diperoleh dapat dibuat sedekat mungkin dengan nilai sesungguhnya.

3. Tampilan hasil perhitungan dapat disimulasikan.

Kelemahan dari Metode Numerik:

1. Nilai yang diperoleh berupa pendekatan atau hampiran.

2. Tanpa bantuan komputer, proses perhitungan akan berlangsung lama dan berulang-ulang.


1. Menentukan Akar-Akar

Ada beberapa metode yang dapat digunakan untuk menyelesaikan suatu persamaan. Metode ini merupakan penyelesaian perkiraan, tetapi lebih sistematis untuk menghitung akar-akar persamaan. Dalam metode numerik, pencarian akar f(x)=0 dilakukan secara lelaran (iteratif). Secara umum, semua metode pencarian akar dapat dikelompokkan menjadi 2 golongan besar :

• Metode Tertutup

Metode yang termasuk ke dalam golongan ini mencari akar di dalam selang [a,b]. Selang [a,b] sudah dipastikan berisi minimal satu buah akar, karena itu metode jenis ini selalu berhasil menemukan akar. Dengan kata lain, lelarannya selalu konvergen (menuju) ke akar, karena itu metode tertutup kadang-kadang dinamakan juga metode konvergen.

Metode yang termasuk dalam golongan ini antara lain :

a. Metode Biseksi atau Metode Setengah Interval ini merupakan Metode dengan bentuk paling sederhana diantara beberapa metode yang akan dipelajari.

b. Metode Regula Falsi atau Metode Interpolasi Linier adalah metode mudah tapi tidak efisien. Untuk mendapatkan hasil yang mendekati nilai eksak diperlukan langkah iterasi yang cukup panjang. Metode Regula Falsi dapat menutup kekurangan itu. Metode Regula Falsi didasarkan pada interpolasi antara dua nilai dari fungsi yang mempunyai tanda berlawanan

• Metode Terbuka

Yang diperlukan pada metode ini, adalah tebakan awal akar, lalu dengan prosedur lelaran, kita menggunakannya untuk menghitung hampiran akar yang baru. Pada setiap lelaran, hampiran akar lama yang dipakai untuk menghitung hampiran akar yang baru. Mungkin saja hampiran akar yang baru mendekati akar sejati (konvergen), atau mungkin menjauhinya (divergen). Karena itu, metode terbuka tidak selalu berhasil menemukan akar, kadang-kadang konvergen, kadangkala ia divergen.

Metode yang termasuk dalam golongan ini antara lain :

a. Metode Newton Raphson, Metode ini paling banyak digunakan dalam mencari akar-akar dari suatu persamaan.

b. Metode Secant, Kekurangan Metode Newton Raphson adalah diperlukannya turunan pertama (differensial) dari f(x) dalam hitungan. Kadang-kadang sulit untuk mendiferensialkan persamaan yang diselesaikan. Untuk itu maka bentuk diferensial didekati dengan nilai perkiraan berdasarkan diferensial beda hingga.

c. Metode Iterasi, Dalam metode iterasi ini digunakan suatu persamaan untuk memperkirakan nilai akar persamaan. Persamaan tersebut dikembangkan dari fungsi f(x) = 0 sehingga parameter x berada disisi kiri dari persamaan, yaitu :

X= g(x)

Persamaan ini menunjukkan bahwa nilai x merupakan fungsi dari x, sehingga dengan memberi nilai perkiraan awal dari akar dapat dihitung perkiraan baru dengan rumus iteratif berikut : Xi+1 = g ( xi )

Besar kesalahan dihitung dengan rumus berikut : ∈a = | (Xi+1 – Xi )/(Xi+1 ) | X 100%


2. Regresi Linier

Regresi merupakan alat ukur yg digunakan untuk mengetahui ada tidaknya korelasi antarvariabel. Analisis regresi lebih akurat dlm analisis korelasi karena tingkat perubahan suatu variabel terhadap variabel lainnya dpt ditentukan). Jadi pada regresi, peramalan atau perkiraan nilai variabel terikat pada nilai variabel bebas lebih akurat pula. Regresi linier adalah regresi yang variabel bebasnya (variabel X) berpangkat paling tinggi satu. Untuk regresi sederhana, yaitu regresi linier yg hanya melibatkan dua variabel (variabel X dan Y).

Y = a + bX

Keterangan :

Y = variabel terikat

X = variabel bebas

a = intersep / konstanta

b = koefisien regresi / slop

Persamaan regresi linear di atas dapat pula dituliskan dalam bentuk :

Regresi afdhal.png


3. Turunan Numerik

Ini digunakan untuk menentukan nilai turunan fungsi f yang diberikan dalam bentik tabel. Ada 3 pendekatan zalm menghitung Turunan Numerik :

1. Hampiran selisih-maju (forward difference approximation)

Selisihmaju afdhal.png

2. Hampiran selisih-mundur (backward difference approximation)

Selisihmundur afdhal.png

3. Hampiran selisih-pusat (central difference approximation)

Selisihpusat afdhal.png


Tugas 1: Pembelajaran OpenModelica

Saya menggunakan tutorial yang ada di youtube sebagai referensi saya dalam mencoba memahami OpenModelica ini. Link video youtube yang saya gunakan : https://www.youtube.com/watch?v=GhtBMIlO70w

Video tersebut menjelaskan tentang tools yang bisa digunakan pada OpenModelica dan libraries yang sudah tersedia. Seperti yang dilakukan pada video, saya mencoba menggunakan step dan first order untuk membuat suatu sistem.

Metnumafdhal13.png


Setelah itu sistem tersebut saya cek dan memiliki 3 persamaan dan 3 variabel yang sudah benar.

Metnumafdhal14.png


Lalu saya simulasi dan mendapatkan hasil grafiknya seperti dibawah ini.


Metnumafdhal15.png



Pertemuan 2: 16 November 2020

Assalamualaikum wr. wb.

Pada pertemuan kedua ini, Pak Dai membuka diskusi tentang pembelajaran OpenModelica. Mahasiswa diberikan kesempatan untuk menjelaskan tentang pembelajaran aplikasi OpenModelica yang sudah dilakukan masing-masing pada tugas 1. Lalu dilanjutkan dengan latihan membuat perhitungan sederhana menjumlahkan angka 10 terhadap suatu variabel dan menghitung rata-rata dengan menggunakan OpenModelica.

Pada percobaan pertama dilakukan perhitungan nilai x untuk persamaan y=x+10 dan saya mencoba dengan x=4

Metnumafdhal1.png


Lalu dilanjutkan dengan mensimulasikannya dan mendapat grafik seperti gambar berikut dan juga didapatkan hasil y=14

Metnumafdhal2.png


Berikutnya percobaan kedua melakukan perhitungan untuk menentukan rata-rata dari kelompok data.

Metnumafdhal3.png


Kemudian disimulasi dan mendapatkan nilai rata-rata yaitu 12. Berikut hasil grafik yang didapat dari simulasi tersebut

Metnumafdhal4.png


Tugas 2: Menyelesaikan persamaan Aljabar Simultan

Aljabar Simultan adalah suatu penyelesaian matematik yang kompleks sehingga membutuhkan penyederhanaan dengan menggunakan bantuan software yang sudah disediakan seperti OpenModelica. Ada beberapa metode yang bisa digunakan pada Aljabar Simultan:

1. Metode Eliminasi Gauss

2. Metode Crammer

3. Metode Gauss Seidel

4. Metode Gauss-Jordan


Berikut persamaan yang saya gunakan untuk aljabar simultan:

X1 + 4X2 + 5X3 = 12

2X1 + 3X2 + 11X3 = 15

3X1 + 8X2 + 15X3 = 25


Berikut dibawah ini adalah hasil screenshot yang saya lakukan untuk menyelesaikan persamaan tersebut

Metnumafdhal5.png


Rangkaian bahasa modelica sudah dicek dengan berisikan 15 persamaan dan 15 variabel yang sudah benar

Metnumafdhal6.png


Berikut adalah hasil grafik yang didapat setelah melakukan simulasi. Didapatkan juga akar-akarnya yaitu

X1 = -22.75

X2 = 2.75

X3 = 4.75

Metnumafdhal7.png



Pertemuan 3: 23 November 2020

Assalamualaikum wr.wb.

Pada pertemuan ketiga ini, Pak Dai membuka diskusi dengan membahas tentang Tugas 2 yang diberikan minggu sebelumnya. Lalu Pak Dai membahas tentang step by step dalam memecahkan masalah teknik menggunakan metode numerik. Step dalam pemecahan masalah tersebut adalah :

1. Masalah Teknik

2. Analisis Masalah

3. Model matematis

4. Model Numerik

5. Komputer

6. Mendapatkan Solusi

Pak Dai juga memberikan tugas yaitu studi kasus seperti yang ada di gambar bawah ini. Kami diminta untuk menyelesaikannya dalam OpenModelica.

Metnumafdhal8.png


Sistem tersebut diubah menjadi bentuk matriks seperti dibawah ini.

Figure12 11.jpg


Dibawah ini adalah hasil screenshot dari percobaan function yang saya buat.

Metnumafdhal9.png


Setelah itu function tersebut di cek dan didapatkan 15 persamaan dan 15 variabel yang sudah benar.

Metnumafdhal10.png


Lalu function itu disimulasi dan mendapatkan grafik sepeti dibawah ini. Didapatkan juga nila-nilai X nya, yaitu:

X1 = 7.3575

X2 = 10.0552

X3 = 12.5077

Metnumafdhal11.png


Tugas 3: Menentukan titik reaksi displacement pada setiap joint dan gaya-gaya reaksinya

Pada tugas 3 ini Pak Dai meminta kami untuk menyelesaikan soal dibawah ini dengan menggunakan OpenModelica.

Metnumafdhal16.png


Ada 4 cara pertama Dalam menyelesaikan soal diatas :

1.Mengubah problem menjadi node dan elemen

2.Menentukan nilai Konstanta kekakuan/stiffness constant dari elemen

3.Membuat persamaan untuk elemen

4.Menyusun dan menggabungkan matriks elemen-elemen

4 cara diatas ada pada buku "Finite Element Analysis" pada halaman 60-70 :

Metnumafdhal31.png
Metnumafdhal30.png
Metnumafdhal32.png
Metnumafdhal33.png
Metnumafdhal34.png
Metnumafdhal35.png


Metnumafdhal36.png


Metnumafdhal26.png


Pertemuan 4: 30 November 2020

Assalamualaikum wr.wb.

Metnumafdhal37.png


Pada pertemuan keempat ini, Pak Dai membuka diskusi dengan membahas analisa beban static dan dynamic. Pak Dai memberi kesempatan kepada mahasiswa untuk memberi pengertian dari analisa static dan dynamic. Kesimpulan dari diskusi yang saya dapat adalah analisa beban static merupakan respon material dari beban yang diam atau bebannya tidak mengalami perubahan terhadap waktu atau kata lain sigma F sama dengan 0. Sedangkan analisa beban dynamic merupakan respon beban yang mengalami perubahan terhadap perubahan waktu atau sigma F tidak sama dengan 0.

Hubungan antara metode numerik dengan statika struktur yaitu untuk memecahkan suatu permasalahan dari suatu kasus sehari-hari seperti pada Tugas 3 yaitu batang yang bisa dilakukan dengan breakdown gaya-gaya yang ada pada sistem tersebut.

Metode Numerik untuk permasalahan teknik seperti permasalahan fisika yang diubah menjadi lebih matematis dan menggunakan komputer sebagai perhitungan numerik sebagai tools untuk menghitung perhitungan yang rumit.


Quiz

Pak Dai memberi 2 soal untuk quiz pada pertemuan keempat ini. Pak Dai meminta untuk mengirimkan Flow Chart terlebih dahulu. Berikut Flow Chart untuk soal yang diberikan Pak Dai.


Metnumafdhal38.jpg


Metnumafdhal39.jpg



Jawab No.8 :

Metnumafdhal41.png
Metnumafdhal42.png
Metnumafdhal43.png
Metnumafdhal44.png
Metnumafdhal45.png

Pertemuan 5: 7 Desember 2020

Assalamualaikum wr.wb.

Pada pertemuan ke-5 ini, Pak Dai membuka kelas dengan menanyakan tentang 2 soal minggu lalu yang diberikan oleh Pak Dai. Pak Dai memberi kesempatan untuk mahasiswa yang sudah bisa dan berhasil dalam mengerjakan soal tersebut. Salah satunya adalah Ahmad Mohammad Fahmi. Fahmi menjelaskan tentang codingan yang sudah dia buat yang bisa diterapkan untuk mengerjakan soal seperti itu. Fahmi menggunakan 1 class dan beberapa function didalam OpenModelica untuk mengerjakan soal tersebut. Alur dari pengerjaannya adalah pertama membuat class untuk menaruh semua data yang ada dari soal dengan equation yaitu beberapa fungsi. Fungsi tersebut yaitu untuk matrix element, matrix global, total dari matrix global, matrix global yang sudah dipengaruhi oleh boundary, gauss jordan untuk mendapatkan nilai U, dan mencari gaya reaksi. Tiap function tersebut memiliki codingan yang berbeda dan saling terhubung. Tetapi menurut Pak Dai, masih butuh 1 function lagi yaitu untuk memastikan gaya yang ada dalam sistem tersebut apakah sudah setimbang. Hal itu menjadi sebuah revisi untuk pekerjaan minggu depan.



Tugas 5


Soal :


Metnumafdhal40.jpg


Pertemuan 6: 14 Desember 2020

Assalamualaikum wr.wb. Pada pertemuan ini Pak Dai meminta mahasiswanya muasabah diri untuk pencapaian dalam memahami materi Metode Numerik ini. Saya sudah agak memahami bagaimana menggunakan openmodelica walaupun belum sepenuhnya. Saya sudah mengerti flow chart dalam mengerjakan persoalan fisika tetapi untuk codingannya saya belum mengerti sepenuhnya.

Pertemuan 7: 21 Desember 2020

Assalamualaikum wr.wb.



Tugas Besar

Assalamualaikum wr.wb.

Berikut merupakan progres dari tugas besar yang saya kerjakan.


Asumsi dan Constraint

Asumsi:

- Diasumsikan tidak ada bending karena bersifat truss

- Beban terdistribusi pada node

- Safety Factor = 2

- Batas displacement 0,001m sebelum terjadi buckling

- Variabel bebas

Constraint:

- Node 1,2,3,4 (lantai dasar) fixed

- Beban F1 dan F2 terdistribusi ke node sekitaranya, sehingga:

1. Node 13 & 16 = 1000N

2. Node 14 & 15 = 500N


Metnumafdhal46.png


Berikut coding untuk menentukan curve fitting untung cost pada excel

function Curve_Fitting
input Real X[:];
input Real Y[size(X,1)];
input Integer order=2;
output Real Coe[order+1];
protected
Real Z[size(X,1),order+1];
Real ZTr[order+1,size(X,1)];
Real A[order+1,order+1];
Real B[order+1];
algorithm
for i in 1:size(X,1) loop
  for j in 1:(order+1) loop
  Z[i,j]:=X[i]^(order+1-j);
  end for;
end for;
ZTr:=transpose(Z);
A:=ZTr*Z;
B:=ZTr*Y;
Coe:=Modelica.Math.Matrices.solve(A,B);
//Coe:=fill(2,size(Coe,1));
end Curve_Fitting;
/*
for i in 1:3 loop
 for j in 1:Points loop
  R[j]:=reaction[3*(j-1)+i];
 end for;
 Sur[i]:=sum(R);
end for;
*/
model callcurve
 parameter Real [3] X={5.8e6,3.4e6,1.1e6};
 parameter Real [3] Y={239500,420900,1697700};
 Real [3] Coe;
algorithm
 Coe:=Curve_Fitting(X,Y);
end callcurve;


Metnumafdhal47.png