Metnum03 Edward Joshua Patrianus Mendrofa
Contents
Pertemuan Metode Numerik 03
Pertemuan 1
Metode Numerik adalah salah satu mata kuliah yang sangat banyak penerapannya dalam dunia keteknikan. Mata kuliah ini salah satu mata kuliah yang cukup menarik karena penerapannya sangat luas dan bermanfaat. Sejauh ini yang telah saya pelajari sebelum UTS mencakup 3 materi besar yaitu mencari akar-akar, regresi linier, dan turunan numerik.
1. Mencari Akar-Akar
Pada materi ini, saya mempelajari metode-metode untuk mencari akar secara numerik. Beberapa metode yang saya pelajari adalah metode pencarian akar menggunakan Closed methods (Bracketing Method) dan Open Methods.
Metode Closed Methods merupakan metode pencarian akar-akar dengan menggunakan batas atas dan batas bawah untuk mencari akar dan mengukur persentasi error yang didapat untuk mendapat tingkat akurasi dari iterasi. Metode yang saya pelajari ada 3 yaitu Graphical Methods, Bisection Methods, dan False-Position Methods.
Graphical Methods Sebuah metode sederhana yang menggunakan grafik untuk memperkirakan akar-akar suatu fungsi. Metode ini dilakukan dengan melakukan plotting dari suatu fungsi ke dalam bentuk grafik. Bisection Methods Metode ini merupakan salah satu jenis metode incremental search method yang menggunakan batas atas dan batas bawah untuk mempersempit area pencarian akar-akar. False-Position Methods Metode ini sangat mirip dengan metode Bisection. Hal yang membedakan metode False-Position dengan Bisection adalah penentuan titik tengah dari batas-batas yang ditentukan. Penentuan titik tengah dari False-Position Method menggunakan persamaan berikut. |
Metode Open Methods merupakan metode pencarian yang hanya menggunakan 1 titik untuk menemukan akar-akar. Metode ini dapat menggunakan turunan suatu fungsi untuk menentukan titik pengujian baru yang semakin dekat dengan nilai akar-akar yang diinginakn. Metode yang saya pelajari ada 3 yaitu Fixed-Point Iteration, Newton-Rapshon, dan Secant Method
Fixed-Point Iteration Metode ini disebut juga metode iterasi sederhana, adalah metode yang memisahkan x dengan sebagian x yang lain sehingga diperoleh: x=g(x) Newton-RaphsonMetode ini menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut. Slop atau gradien didapatkan dengan melakukan turunan dari fungsi tersebut. Persamaan untuk Newton-Raphson adalah sebagai berikut:
Metode ini merupakan metode modifikasi Newton-Raphson dimana metode Newton-Raphson tidak digunakan (karena f'(x) sulit ditemukan atau tidak mungkin ditemukan). Persaman untuk metode Secant adalah sebagai berikut |
2. Regresi Linier
regresi linear adalah sebuah pendekatan untuk memodelkan hubungan antara variable terikat Y dan satu atau lebih variable bebas yang disebut X. Salah satu kegunaan dari regresi linear adalah untuk melakukan prediksi berdasarkan data-data yang telah dimiliki sebelumnya. Hubungan di antara variable-variabel tersebut disebut sebagai model regresi linear.
Persamaan umum Regresi Linier adalah sebagai berikut:
dimana:
3. Turunan Numerik
Turunan Numerik adalah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk tabel. Terdapat 3 pendekatan dalam menghitung turunan numerik:
Tugas Pertemuan 1: OpenModelica
Setelah pertemuan 1, pak Dai meminta kami untuk mempelajari OpenModelica
Untuk mempelajari OpenModelica, saya menggunakan referensi/tutorial dari YouTube dengan tautan berikut:
https://www.youtube.com/watch?v=SW5Eclf1tRs
https://www.youtube.com/watch?v=m0Ahs8fEN28&t=519s&ab_channel=NSTUFACE
Dari video-video tersebut saya diperkenalkan mengenai interface OpenModelica untuk pemula. Saya juga mempelajari bahwa OpenModelica menggunakan bahasa program Modelica untuk penggunaannya. Bahasa ini mirip dengan bahasa pemograman lain seperti python. Kelebihan yang saya lihat dari OpenModelica ini adalah program ini memiliki tools yang membantu mempermudah kita untuk membuat sistem dalam bentuk grafis atau skema. Model-model ini dapat kita aplikasikan dalam kehidupan nyata seperti membuat sistem elektrikal, magnetik, fluida, perpindahan panas, dsb.
Dalam konteks Metode Numerik, saya mempelajari bahwa OpenModelica dapat membantu kita dalam menyelesaikan permasalahan-permasalahan dalam mata kuliah Metode Numerik dan memvisualisasikan penyelesaian tersebut dalam bentuk grafik, salah satunya adalah penyelesaian Persamaan Diferensial Biasa atau ODE.
Contoh penyelesaian permasalahan ODE menggunakan OpenModelica adalah persamaan pendulum, yang didefinisikan sebagai berikut:
Dengan menggunakan referensi dari tautan kedua, saya membuat bahasa pemograman untuk menyelesaikan persamaan pendulum tersebut.
model pendulum Real y "variable state"; Real x; parameter Real L=1 "pendulum length"; constant Real g=9.80665; initial equation y=9 "initial value"; equation x=der(y); der(x)+(g/L)*(y)=0 "differential equation"; annotation(experiment(StartTime = 0, StopTime = 100)); end pendulum;
Penyelesaian dari persamaan tersebut digambarkan dalam bentuk grafik sebagai berikut
Dari grafik tersebut dapat dilihat bahwa seiring berjalannya waktu, pendulum melakukan osilasi. Namun dapat dilihat bahwa pendulum tersebut tidak kembali ketitik semula seiring berjalannya waktu.
Dari pembelajaran ini, saya mempelajari bahwa OpenModelica merupakan tools yang berguna dalam pelajaran Metode Numerik.
Pertemuan 2
Pada pertemuan kedua ini, pak Dai mengevaluasi hasil belajar kami tentang yang sudah kami pelajari tentang Metode Numerik sebelum UTS, serta mempelajari penggunaan aplikasi OpenModelica. Kemudian kami diminta untuk membuat coding sederhana terkait nilai rata-rata 10 sample.
Setelah sesi belajar tatap muka berakhir, kami diberikan tugas oleh pak Dai untuk membuat model untuk menyelesaikan persamaan-persamaan aljabar simultan (seperti Gauss Elimination, Gauss-Seidel, dll.).
Untuk PR, saya menggunakan 3 persamaan aljabar sebagai berikut:
Persamaan aljabar simultan tersebut dapat diselesaikan dengan metode konvensional seperti Naive Gauss Elimination, atau menggunakan metode lain sepertiGauss Elimination yang melibatkan matriks , atau Gauss Seidel. Pada kali ini, saya menggunakan metode Gauss Elimination untuk menyelesaikan persamaan tersebut.
Gauss Elimination adalah algoritme yang digunakan untuk menyelesaikan sistem persamaan linear. Metode ini melibatkan perubahan bentuk sistem persamaan menjadi bentuk matriks. Setelah mengubah sistem dalam bentuk matriks, lalu dilakukan pengurangan baris dengan mengganti posisi baris, dan/atau melakukan operasi penjumlahan dan pengurangan antar baris.
Modelica menyediakan model untuk menyelesaikan permasalahan aljabar simultan dengan menggunakan metode Gauss Elimination. Maka dari itu, saya mengubah sistem persamaan tersebut menjadi bentuk matriks. Berikut adalah model yang saya buat dengan OpenModelica:
Saya menggunakan perintah dari library modelica yaitu "Modelica.Math.Matrices.solve(A,b)" untuk menyelesaikan sistem persamaan linier tersebut.
Setelah melakukan pengecekan dan melakukan simulasi terhadap model, saya melakukan plotting terhadap hasil simulasi tersebut. Berikut adalah hasil plotting tersebut:
dapat dilihat bahwa hasil plotting tersebut menunjukkan penyelesaian dari permasalaha sistem persamaan yang telah ditunjukkan sebelumnya, yaitu x1=3, x2=2, x3=1.
Pertemuan 3
Pada pertemuan hari ini, Pak Dai menjelaskan mengenai aplikasi metode numerik pada permasalahan teknik. Salah satu permasalahan teknik yang dibahas adalah permasalahan sistem pegas-massa. Lalu pak Dai meminta kami untuk memahami permasalahan pada Figure 12.11 pada e-book Metode Numerik. Dengan mengubah sistem menjadi bentuk matrix, kita mendapatkan bentuk matrix dari sistem tersebut sebagai berikut:
persamaan matrix tersebut dapat diselesaikan dengan metode eliminasi gauss. Lalu saya membuat coding di OpenModelica sebagai berikut:
setelah melakukan melakukan pengecekan dan tidak ada masalah, saya melakukan simulasi untuk menemukan nilai x1,x2, dan x3 dari persamaan matriks tersebut. Setelah melakukan simulasi, saya melakukan plotting untuk melihat hasil yang ditemukan
dapat dilihat bahwa nilai x1 = 7.3575; x2 = 10.0552; x3 = 12.5077, sesuai dengan hasil yang ada di buku Metode Numerik.
Tugas Pertemuan 3
Setelah pertemuan ini, pak Dai memberikan PR untuk mengerjakan soal berikut:
Langkah Penyelesaian Example 2-1
1. Mengubah problem menjadi node dan elemen |
---|
2. Menentukan nilai Konstanta kekakuan/stiffness constant dari elemen | |
---|---|
Elemen 1,3,4,6 | |
Elemen 2,5 |
4. Menyusun dan menggabungkan matriks elemen-elemen |
---|
4. Menyusun dan menggabungkan matriks elemen-elemen |
---|
Pertemuan 4
Kuis
Membuat Flowchart untuk penyelesaian soal nomor 4 dan 8
Soal No.4 | |
Soal No.8 |
Berikut adalah penyelesaian untuk soal diatas
Pertemuan 5
Pada pertemuan hari ini, kami diminta pak Dai untuk membahas tugas kuis yang sudah kami buat. Pak Dai meminta saya untuk menjelaskan tentang progress yang sudah saya buat. Namun, tugas yang saya kerjakan belum dalam bentuk coding. Kemudian saya menjelaskan mengenai ide besar coding untuk Tugas Kuis minggu lalu yang sudah dikerjakan oleh saudara Josiah Enrico. Secara garis besar, perlu dibuat fungsi panggil yang digunakan pada algoritme dalam model.
Setelah itu teman saya, Fahmi, menjelaskan mengenai coding yang ia buat untuk Tugas Kuis minggu lalu yaitu mengenai Plane Truss dan Space Truss.
Tugas Pertemuan 5
Setelah kelas, Pak Dai memberikan tugas 5 sebagai berikut:
Berikut adalah langkah penyelesaian dari kuis nomor 5
Pertemuan 6
Pada pertemuan hari ini, Pak Dai meminta kami untuk melakukan muhasabah terhadap hasil pembelajaran kami selama kelas Metode Numerik bersama Pak Dai. Berikut adalah muhasabah saya:
Menurut saya, saya merasa sudah cukup paham untuk memahami dasar-dasar dari metode numerik yang sudah diajari sebelum UTS. Pemahaman ini menjadi dasar saya untuk menerapkan metode numerik dengan menggunakan pemorgraman seperti OpenModelica. Selain pemahaman numerik, saya juga sudah cukup memahami tentang fenomena fisika dan membuat model matematika dari fenomena fisika tersebut. Penyelesaian masalah dibantu dengan metode numerik akan sangat membantu kita dalam menyelesaikan masalah teknik. Namun karena saya belum memahami bahasa pemograman modelica, maka saya sedikit kesulitan untuk menterjemahkan flowchart dalam penyelesaian masalaha teknik menjadi bahasa program.