Abraham Mahendiartha Putra
Biodata Diri
Nama : Abraham Mahendiartha Putra
NPM : 1806201390
TTL : Jakarta, 25 Mei 2000
Hobi : Bersepeda
Saya adalah mahasiswa FTUI angkatan 2018 dari jurusan Teknik Mesin dan saya adalah salah satu ciptaan terbaik dari Tuhan Yang Maha Esa, karena pada prinsipnya Tuhan Yang Maha Esa itu mendesain manusia dengan sebaik-baiknya makhluk.
Saya merupakan mahasiswa dari Universitas Indonesia dengan jurusan Teknik Mesin. Saya selalu termotivasi untuk mengembangkan kemampuan saya baik secara akademik maupun non akademik, dengan cara metode pembelajaran baik di dalam maupun diluar universitas. Saya berharap saya dapat menjadi orang yang dapat membantu bagi sekitar saya di masa depan.
Contents
Tujuan Pembelajaran
Tujuan dari pembelajaran metode numerik ini adalah :
- 1. Membuat saya paham konsep dengan dengan baik tentang dasar-dasar dari metode numerik. Jika tidak dapat memahami konsep dengan baik maka tidak dapat mengerti.
- 2. Memampukan saya memahami konsep didalam sebuah model numerik.
- 3. Memampukan saya dalam mengerjakan soal teknik dengan ilmu numerik.
- 4. Sebagai nilai tambah bagi saya agar menjadi manusia yang beradab seperti pada Sila ke-2 Pancasila.
Mata Kuliah Metode Numerik
Selama pelajaran metode numerik sebelum uts ini, saya belajar tentang adanya error atau kesalahan di dalam metode numerik, serta saya juga belajar tentang banyaknya pendekatan aproksimasi dalam menentukan sebuah faktor-faktor sebuah persamaan. Cara-cara yang digunakan cukup banyak, dengan salah satunya adalah Newton-Rhapson, Bisection, serta secant method. Selain hal tersebut saya juga diajarkan metode interpolasi yang mana metode ini dapat membantu saya dalam menentukan sebuah angka diantara 2 buah data.
Pada diskusi pembelajaran Rabu 11 November 2020, saya belajar bahwa sebagai manusia saya memang sering merasa saya mengerti dan paham banyak hal. Namun diatas semua itu, saya harus mengetahui limitasi serta harus tau bahwa Tuhan adalah yang paling mengerti dan paling tau di dunia ini. Saya diberikan sebuah contoh pemahaman dengan menghitung nilai 1/0 dimana nilai tersebut tidak dapat di definisikan oleh manusia, tapi nilai tersebut hanya diketahui oleh Tuhan karena pada akhirnya Tuhan adalah Yang Maha Esa.
Minggu 1 (Rabu, 11 November 2020)
Tugas 1
Pada minggu pertama ini, setiap mahasiswa diminta untuk melihat dan mempraktikan tentang tutorial atau dasar Open Modellica dari youtube. Kemudian kami juga diharapkan untuk mengupload video tutorial singkat. Berikut ini adalah video basic tutorial dari saya untuk penghitungan defleksi statik pada Open Modellica
Minggu 2 (Rabu, 18 November 2020)
Pada minggu kedua ini, kelas kami diminta untuk mereview dan menunjukan apa yang telah kami pelajari dari minggu pertama kemarin, serta apa yang telah kami pelajari dirumah pada aplikasi Open Modellica. Dalam kelas minggu 2, saya menunjukan apa yang telah saya buat pada Pak Dai dan Asisten. Selain itu, pada minggu ke 2 ini saya diajari apa alasan pemilihan penggunaan Open Modellica oleh Pak Dai, dimana Open Modellica bukanlah merupakah aplikasi programming namun aplikasi ini lebih terfokuskan untuk modelling dan perhitungan, sehingga hal ini yang menyebabkan penghitungan pada Open Modellica menjadi lama karena bahasa yang kita tulis pada Open Modellica akan di translate terlebih dahulu dalam bahasa C++ kemudian akan di proses kembali menjadi data-data perhitungan.
Dalam minggu kedua ini, kami juga mempelajari ilmu baru yaitu tentang class panggil dari file function. Dimana contoh fungsi yang kita buat adalah sebagai berikut :
FungsiTambahX1
function FungsiTambahX1 input Real x; output Real y; algorithm y:=x+10; end FungsiTambahX1;
Kemudian, kami membuat kelas untuk memanggil file fungsi yang telah kami buat diatas :
Panggil
class Panggil parameter Real x1=5; Real hasil10tambahx1; equation hasil10tambahx1=FungsiTambahX1(x1);
Dengan menggunakan file panggil diatas, nilai input x1 dapat didapatkan berdasarkan nilai yang diketik pada kelas panggil dan nilai input akan masuk terhadap function yang dipanggil oleh kelas panggil.
Tugas 2
Pada minggu ini, kami diberikan tugas kedua untuk membuat fungsi panggil seperti yang dicontohkan dalam perkelasan Metode Numerik pekan 2, dengan menggunakan persamaan algebra simultan dan variabel array. Dalam algebra simultan, ada beberapa variabel yang harus dicari valuenya dan variabel array adalah adalah variabel yang memiliki beberapa data nilai di dalamnya.
Dalam tugas ini saya akan membuat 4 persamaan sederhana dengan 4 nilai variabel yang nilainya harus dicari. Soal dari tugas 2 ini adalah sebagai berikut :
Kemudian, saya membuat file seperti berikut ini untuk menghitung persamaan berikut:
GaussFunction
function GaussFunction input Real A[4,4]; input Real B[4]; output Real R[4]; algorithm R:=Modelica.Math.Matrices.solve(A,B); end GaussFunction;
GaussJordan
class GaussJordan parameter Real A[4,4]=[2,4,-1,2;4,2,3,-1;6,-3,4,4;-2,1,-2,-1]; parameter Real B[4]={-7,17,19,-9}; Real X[4]; equation X=GaussFunction(A,B); end GaussJordan;
Dengan menggunakan perhitungan diatas ini, maka didapatkan hasil sebagai berikut di Open Modellica, yang mana perhitungan ini saya bandingkan langsung dengan solusi manual yang diberikan oleh sebuah website. Hasil ini menunjukan bahwa hasil perhitungan jika data yang dimasukan adalah sama, maka tidak mungkin memiliki hasil yang berbeda.
Selain itu saya juga membuat sebuah video untuk menunjukan hasil yang telah saya buat dan cara memasukan data jika bentuk matriks yang diberikan adalah berbeda, serta bagaimana cara menangani jika ada error yang terjadi dalam proses pengerjaan.
Minggu 3 (Rabu, 25 November 2020)
Pada minggu ketiga ini, kami mempelajari tentang cara-cara penyelesaian lain pada open Modellica. Yang difokuskan pada minggu ini adalah penggunaan array dalam penggunaan Open Modellica, dimana array adalah kumpulan himpunan penyelesaian. Didalam array penting adanya penggunaan pembatasan itterasi dengan menggunakan parameter integer. Selain itu, Pak Dai juga mengajak kami agar mencoba membuat pseudocode saya sendiri tanpa menggunakan fungsi yang digunakan oleh OpenModellica. Dalam proses ini, saya juga dibantu jelaskan oleh teman saya yaitu Christo tentang pseudocode GaussJordan yang telah ia buat, yang bentuknya adalah berikut ini :
GaussJordan.mo
function GaussJordan input Real [:,:] A; output Real [:,:] B; protected // untuk local variable Integer h = 1; //pivot row Integer k = 1; //pivot coloumn Integer m = size(A,1); //Number of row Integer n = size(A,2); //Number of column Integer c = 0; Integer max_row; // Row index of max number in pivot column Real [:] pivot_column; Real [:] pivot_row; Real [:,:] temp_array; Real r; Real float_error = 10e-10; algorithm //fungsi input A dan output B B := A; while h <= m and k <= n loop for i in 1 : m loop for j in 1 : n loop if abs(B[i,j]) <= float_error then B[i,j] := 0; end if; end for; end for; //Finding pivot pivot_column:= {B[i,h] for i in h:m}; //Mencari baris terbawah yang mempunyai nilai pivot tertinggi c:=h-1; for element in pivot_column loop c:= c+1; if abs(element)== max(abs(pivot_column)) then max_row :=c; end if; end for; //Jika tidak ada pivot di kolom ini, pindah ke kolom selanjutnya if B[max_row,k] == 0 then k:=k+1; else // tukar row h - max_row temp_array := B; temp_array[h] := B[max_row]; temp_array[max_row] := B[h]; B:= temp_array; //devide pivot row by pivot number B[h] := B[h]/B[h,k]; for i in (h+1) :m loop r := B[i,k]/B[h,k]; B[i,k]:=0; for j in (k+1) : n loop B[i,j] := B[i,j]-B[h,j] * r; end for; end for; //move ke pivot kolom dan row selanjutnya h := h+1; k := k+1; end if; end while; // proses dari kanan atas h :=m; k :=n; while h >=1 and k>=1 loop //dealing with error for i in 1:m loop for j in 1:n loop if abs(B[i,j]) <=float_error then B[i,j]:=0; end if; end for; end for; //finding pivot pivot_row := {B[h,i] for i in 1:k}; //Get position index k of pivot c := 0; for element in pivot_row loop c := c+1; if element <> 0 then break; end if; end for; k:= c; // no pivot in this row, move to next row if B[h,k] == 0 then h:= h-1; else //perform row operatation for i in 1:(h-1) loop r := B[i,k]; B[i] := B[i] - B[h] *r; end for; //move to next pivot row dan column h:=h+1; k:=k+1; end if; end while; end GaussJordan;
Tugas 4
Pada hari ini kamu juga diberi tugas untuk menerapkan Pseudocode mathlab dari Figure 9.4 yang ada di buku terhadap open modellica. Dimana pseudocode untuk tugas ini yang telah saya buat adalah sebagai berikut
PseudoCode Truss
PR_Truss
class PR_Truss parameter Integer N=8; //Bentuk matriks berapa x berapa parameter Real A=0.001; parameter Real E=200e9; Real KG[N,N]; Real KGinitial[N,N]; Real Sol[N]; Real X[N]={0,0,-1035.2762,-3863.7033,0,0,-1035.2762,-3863.7033}; Real R[N]; Real SolMat[N,1]; Real XMat[N,1]; Real L1=1; Real L2=1; Real L3=1.6; Real L4=1.25; Real L5=1.6; Real Tetha1=degtorad(0);//Data dari Chegg Real Tetha2=degtorad(0);//Data dari Chegg Real Tetha3=degtorad(231.34);//Data dari Chegg Real Tetha4=degtorad(270);//Data dari Chegg Real Tetha5=degtorad(308.66);//Data dari Chegg //Boundary Integer b1=1; Integer b2=3; //Truss 1 Real X1=Tetha1; Real k1=A*E/L1; Real K1[4,4]; Integer p1o=1; Integer p1i=2; Real KG1[N,N]; //Truss 2 Real X2=Tetha2; Real k2=A*E/L2; Real K2[4,4]; Integer p2o=2; Integer p2i=3; Real KG2[N,N]; //Truss 3 Real X3=Tetha1; Real k3=A*E/L3; Real K3[4,4]; Integer p3o=2; Integer p3i=4; Real KG3[N,N]; //Truss 4 Real X4=Tetha4; Real k4=A*E/L4; Real K4[4,4]; Integer p4o=1; Integer p4i=4; Real KG4[N,N]; //Truss 5 Real X5=Tetha5; Real k5=A*E/L5; Real K5[4,4]; Integer p5o=3; Integer p5i=4; Real KG5[N,N]; algorithm //Pembuatan K Global K1:=Stiffness_Matrices(X1); KG1:=k1*Local_Global(K1,N,p1o,p1i); K2:=Stiffness_Matrices(X2); KG2:=k2*Local_Global(K2,N,p2o,p2i); K3:=Stiffness_Matrices(X3); KG3:=k3*Local_Global(K3,N,p3o,p3i); K4:=Stiffness_Matrices(X4); KG4:=k4*Local_Global(K4,N,p4o,p4i); K5:=Stiffness_Matrices(X5); KG5:=k5*Local_Global(K5,N,p5o,p5i); KG:=KG1+KG2+KG3+KG4+KG5; KGinitial:=KG; //Implementing boundary for i in 1:N loop KG[2*b1-1,i]:=0; KG[2*b1,i]:=0; KG[2*b2-1,i]:=0; KG[2*b2,i]:=0; end for; KG[2*b1-1,2*b1-1]:=1; KG[2*b1,2*b1]:=1; KG[2*b2-1,2*b2-1]:=1; KG[2*b2,2*b2]:=1; //Solving displacement Sol:=Gauss_Jordan(N,KG,X); //Solving reaction force SolMat:=matrix(Sol); XMat:=matrix(X); R:=Reaction_Trusses(N,KGinitial,SolMat,XMat); end PR_Truss;
PseudoCode Panggil
degtorad
function degtorad input Real deg; output Real rad; protected constant Real pi = 3.14; algorithm rad:=deg*pi/180; end degtorad;
Stiffness_Matrices
function Stiffness_Matrices input Real A; output Real X[4,4]; protected Real Y; Real float_error = 10e-10; final constant Real pi=2*Modelica.Math.asin(1.0); algorithm Y:=A/180*pi; X:=[(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.cos(Y))^2,- Modelica.Math.cos(Y)*Modelica.Math.sin(Y); Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),- (Modelica.Math.sin(Y))^2; -(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y), (Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y); -Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y), (Modelica.Math.sin(Y))^2]; for i in 1:4 loop for j in 1:4 loop if abs(X[i,j]) <= float_error then X[i,j] := 0; end if; end for; end for; end Stiffness_Matrices;
Local_Global
function Local_Global input Real Y[4,4]; input Integer B; input Integer p1; input Integer p2; output Real G[B,B]; algorithm for i in 1:B loop for j in 1:B loop G[i,j]:=0; end for; end for; G[2*p1,2*p1]:=Y[2,2]; G[2*p1-1,2*p1-1]:=Y[1,1]; G[2*p1,2*p1-1]:=Y[2,1]; G[2*p1-1,2*p1]:=Y[1,2]; G[2*p2,2*p2]:=Y[4,4]; G[2*p2-1,2*p2-1]:=Y[3,3]; G[2*p2,2*p2-1]:=Y[4,3]; G[2*p2-1,2*p2]:=Y[3,4]; G[2*p2,2*p1]:=Y[4,2]; G[2*p2-1,2*p1-1]:=Y[3,1]; G[2*p2,2*p1-1]:=Y[4,1]; G[2*p2-1,2*p1]:=Y[3,2]; G[2*p1,2*p2]:=Y[2,4]; G[2*p1-1,2*p2-1]:=Y[1,3]; G[2*p1,2*p2-1]:=Y[2,3]; G[2*p1-1,2*p2]:=Y[1,4]; end Local_Global;
Reaction_Trusses
function Reaction_Trusses input Integer N; input Real A[N,N]; input Real B[N,1]; input Real C[N,1]; output Real Sol[N]; protected Real X[N,1]; Real float_error = 10e-10; algorithm X:=A*B-C; for i in 1:N loop if abs(X[i,1]) <= float_error then X[i,1] := 0; end if; end for; for i in 1:N loop Sol[i]:=X[i,1]; end for; end Reaction_Trusses;
Gauss_Jordan
function Gauss_Jordan input Integer N; input Real A[N,N]; input Real B[N]; output Real X[N]; protected Real float_error = 10e-10; algorithm X:=Modelica.Math.Matrices.solve(A,B); for i in 1:N loop if abs(X[i]) <= float_error then X[i] := 0; end if; end for; end Gauss_Jordan;