Metnum03-Dendy Dwi Rohma P J

From ccitonlinewiki
Revision as of 12:01, 30 November 2020 by DendyJaya (talk | contribs) (TRUSS ANALYSIS MATRIX)
Jump to: navigation, search

Assalamualaikum Warahmatullahi Wabarakatuh

Nama:Dendy Dwi Rohma P J

NPM: 1906435473

Pertemuan 1

1. Tugas_01_MetodeNumerik03

Dalam mencari nilai suatu akar dari suatu persamaan atau permasalahan yang ada, berbagai macam cara dan metode, berikut ini bermacam-macam metode yang dapat kita gunakan dalam mencari nilai suatu akar persamaan :

1. Metode Bagi dua (Bisection)

2. Metode False Position

3. Metode Secant

4. Metode Iterasi Titik Tetap

5. Metode Newton Raphson

Dalam kesempatan kali ini saya akan membahas tentang metode secant.

Pengertian Metode Secant

Metode secant merupakan perbaikan dari metode regula-falsi dan newton raphson dimana kemiringan dua titik dinyatakan sacara diskrit, dengan mengambil bentuk garis lurus yang melalui satu titik.Tujuan dan Fungsi Tujuan metode secant adalah untuk menyelesaikan masalah yang terdapat pada metode Newton-Raphson yang terkadang sulit mendapatkan turunan pertama yaitu f'(x). Fungsi metode secant adalah untuk menaksirkan akar dengan menggunakan diferensi daripada turunan untuk memperkirakan kemiringan/slope.

Algoritma Metode Secant 1. Definisikan fungsi F(x) 2. Definisikan torelansi error (e) dan iterasi maksimum (n) 3. Masukkan dua nilai pendekatan awal yang di antaranya terdapat akar yaitu x0 dan x1,sebaiknya gunakan metode tabel atau grafis untuk menjamin titik pendakatannya adalah titik pendekatan yang konvergensinya pada akar persamaan yang diharapkan.

SOAL 1

Cari Akar Persamaan dari Persamaan f(x) dengan Metode Secant Method pada Literasi ke 4? f(x) = 3x^3 -x -1

Asumsi:

       x0 = -1
       x  = 1
RumusSecant.png
HasilLiterasi.png
Code12.png

Penjelasan menganai pemrograman Secant Method menggunakan OpenModelica terlampir dalam Link dibawah ini:

Link Youtube : https://www.youtube.com/watch?v=Bk_QtrInpks

Pertemuan 2

LatihanMean2.png

Melakukan latihan mencari nilai mean dari persamaan dan data sederhana.

PR Eliminasi Gauss

CodingGauss1.png
PlotingGauss2.png
ValidasiGauss.jpg


Pertemuan 3

3. Tugas_03_MetodeNumerik03

MASS SPRING ANALYSIS MATRIX

TRUSS ANALYSIS MATRIX

Tugas kali ini disuruh mencari nilai defleksi/dX/U pada suatu truss yang disusun dan dikenai pembebanan dan tumpuan seperti pada soal dibawah ini. Lalu kemudian setelah kita menemukan nilai U lalu digunakan untuk mencari reaksi gaya (R) pada setiap elemen truss.

1 Soal Truss.png

Berdasarkan susunan truss diatas, kita harus mampu menjabarkan setiap beam/ truss menjadi notasi element, tumpuan menjadi notasi node dan sudut element terhadap garis refrensi yg kita pilih (saya menggunakan X positif sbg sb.0 deg). Lalu setelah dilakukan penjabaran berdasarkan element, node dan sudut didapatkan Tabel 2.1 sebagai hubungannya.

2 Truss MenjadiNode.png

Setelah itu dilakukan perkalian untuk mencari nilai kekakuan setiap truss/ element dengan rumus k=A.E/L. Namun sebelumnya dilakukan pengelompokan berdasarkan panjang batang/truss lalu didapatkan batang dengan panjang yang sama (1,3,4,6) dan batang (2,5). Namun untuk mendapatkan nilai K lokal nilai k(kekakuan) harus terlebih dahulu dikalikan dengan rumus K lokal dalam bentuk matrix 4x4.

3 KonstantaStiffness 1.3.4.6.png

3 KonstantaStiffness 2.5.png

Nah rumus K^e atau K lokal menurut pemahaman saya dapat berbeda-beda tergantung dengan susunan dari truss (sudut yang terbentuk dari sb. refrensi yang kita gunakan) atau batang dan tumpuan yang kita gunakan. Lalu untuk nilai k (kekakuan) hanya dipengaruhi dari cross section area (A), elastisitas (E) dan panjang batang (L)

4 RumusK.png

Analisa Batang 4

Analisa batang pada contoh soal ini jg dapat dikelompokan berdasarkan panjang batangnya. Jadi untuk analisa pertama batang (1,3,4,6) dan batang (2 dan 5). Pada batang (1,3,dan 6) memiliki sudut refrensi yang sama yaitu 0 derajat, namun ketiga element ini memiliki node yang berbeda sehingga akan berpengaruh pada peletakan hasil matrix 4x4 pada matrix global (K^G) 10x10.

5 1 AnalisaElemen4.png

Pada gambar dibawah ini hasil K^e (K lokal) dimasukan ke dalam matrix 10x10 K^G berdasarkan node arah sb. X dan sb. Y.

5 2 Elemen4 DiglobalMatrik.png

Analisa Batang 2

Kemudian dilakukan analisa batang (2 dan 5) dengan cara yang sama seperti gambar diatas dengan mengunakan rumus matrix K (4x4). Namun pada element 2 dan 5 hanya berbeda pada penggunaan sudut berdasarkan sumbu refrensi (element 2 : 135deg, element 5 : 45deg).

6 1 AnalisaElemen2.png

Pada gambar dibawah ini hasil K^e (K lokal) dimasukan ke dalam matrix 10x10 K^G berdasarkan node arah sb. X dan sb. Y.

6 1 Elemen2Global.png

Analisa Batang 5

6 2 AnalisaElemen5.png

6 2 Elemen5Global.png

Kemudian dilakukan penjumlahan matrik tersebut menjadi matrik global.

7 1 PenjumlahanK-Kglobal.png

Didapatkan hasil penjumlahan matrik lokal tersebut menjadi matrik global dengan jumlah 10x10.

7 2 Kglobal.png

Kemudian dilakukan batasan masalah seperti ada atau tidaknya fix point pada suatu susunan model truss. Berdasarkan soal didapatkan pada node 1 dan 3 adalah nilai U adalah 0 (U1x, U1y, U3x, U3y). Karena apabila tidak dilakukan permisalan maka susunan trus akan berotasi bila dikenai gaya.

8 1 Matrik6x6 PenerapanFixPoint.png

8 2 Matrik6x6 Coding.png

8 3 Matrik6x6 dXatauU.png

9 ReaksiGaya.png

10 dXatauU Matrik10x10.png

11 1 Matrik10x10 MencariReaksi(R).png

11 2 Matrik10x10 Coding.png

11 3 Matrik10x10 Reaksi(R).png