Metnum03-Bagus Rangin

From ccitonlinewiki
Revision as of 04:00, 16 November 2020 by Rangin.bagus (talk | contribs)
Jump to: navigation, search

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ


  Assalamualaikum.Wr.Wb. Page di wiki ini menjadi jurnal proses belajar saya pribadi selama belajar di kelas Metoda Numerik 3 setelah UTS. semoga media ini menjadi perantara saya mendapatkan ilmu. aamiin

1.MATERI METODE NUMERIK SEBELUM UTS


Sebelum menjelaskan materi apa saja yang saya pelajari sebelum UTS, alangkah lebih baiknya saya mmenjelaskan penjelasan saya secara garis besar mengenai metode numerik ini. menurut pemahaman saya sejauh ini metode numerik adalah salah satu cara penyelesaian matematika yang memanfaatkan perhitungan berulang dan pendekatan terhadap suatu nilai dalam mencari persamaan,turunan,integral, maupun data. dalam metoda numerik ini seringkali digunakan asumsi terlebih dahulu dan dengan perhitungan yang berulang maka didapatkan nilai yang mendekati eksak. walaupun tidak selalu dalam prakteknya dilakukan perhitungan berulang, namun menurut hemat saya iterasi dalam metode numerik dapat meningkatkan akurasi dari suatu nilai yang dicari.

Sebagai contoh, Interpolasi. Interpolasi adalah proses mencari sebuah data dengan memanfaatkan data sebelum dan sesudahnya. sebenarnya data yang dihasilkan dari proses interpolasi bukanlah data eksak sebenarnya. namun data yang didapatkan dari metoda interpolasi tersebut lah yang paling mendekati dengan melihat pola variabel dan hasil dari data sebelum dan sesudahnya.

Contoh lain dalam Roots of Equation. metode Bracketing Method contohnya. untuk mencari akar dari sebuah persamaan, kita akan diberikan range nilai dari akar tersebut. namun setelah melakukan perhitungan terus menerus maka range tersebut akan semakin kecil sehingga semakin mendekati suatu nilai. hingga akhirnya error atau dx nya semakin kecil hingga error yang diperbolehkan sebelumnya. semakin banyak kita melakukan iterasi maka semakin mendekati sebuah nilai hasilnya.


Sebelum UTS, Kelas Metode Numerik 3 diampu oleh Pak Engkos. dengan bantuan referensi buku Numerical Method For Engineers karya Steven Chapra, kami mempelajari beberapa chapter diantaranya :

1. Part One - Chapter 4 tentang Truncation Error

2. Part TWO (Tentang Roots of Equation) - Bracketing method, Open method, dan Roots of Polynomials

3. Chapter 9 - Gauss Elimination

4. Part five (Curve Fitting) - Least Square dan Interpolation

5. Part Six ( Numerical Differentiation) - Forward, mid, dan backward method

Dari beberapa bagian tersebut akan saya jelaskan lebih lanjut lagi dibawah mengenai apa saja yang telah saya pelajari sampai dengan UTS.

    2.Roots of Equation
Roots of equations.jpg

Pada dasarnya Roots of Equation dalam metode numerik adalah proses mencari akar-akar dari sebuah persamaan. jika dalam metode eksak terkadang sulit untuk mencari akar persamaan, metode numerik ini dapat membantu untuk mencari nilai nya. saat proses belajar kemarin, kami mencoba mencari akar-akar persamaan menggunakan bantuan microsoft excel untuk mencari akar persamaan nya.

Untuk mencari akar sendiri ada dua garis besar yaitu Open Method dan Bracketing method.

Bracketing Method.seperti nama nya, Bracketing method menggunakan kurungan (atau bisa dibilang dua titik yang mengapit nilai) untuk mencari nilai nya. seiring dilakukanya iterasi, maka kurungan tersebut akan semakin kecil dan semakin mendekati nilai sebenarnya. sebagai contoh, suatu akar adalah 5, Bracket akan dibuat pada titik 1 dan 10 dan seiring dilakukanya iterasi berulang maka kurung tersebut akan menjadi 2&9; 3&7; 4&6; 4,5&5,5 dst.. Bracketing method terbagi menjadi 3 yaitu :

a. Bisection Method : disebut juga metode Bagi-Dua dilakukan dengan terlebih dahulu memilih bagian mana akar berada. dan setelah dilakukan perhitungan dicari bagian mana yang mengandung akar (bagian ini menjadi interval baru). bagian yang tidak mengandung akar dibuang. misal diasumsikan bahwa fungsi f(x) mengandung akar, fungsi kontinyu pada (a,b) dan f(a)f(b)<0 ini berarti f(x) memiliki akar pada interval (a,b). kemudian didefinisikan titik tengah yaitu c= (a+b)/2. lalu dicek pada bagian mana yang mengandung akar, cara mengeceknya adalah dengan mencari apakah f(a).f(c)<0 atau f(b).f(c)< 0. setelah dihitung, maka nilai yang menghasilkan <0 adalah yang mengandung akar (contoh f(a) dan f(c)). sehingga titik a dan c lah yang menjadi interval baru. proses tersebut dilakukan berkali-kali hingga didapatkan error yang sangat kecil atau toleransi yang diinginkan. Pada saat menggunakan teknik ini, kemarin kami menggunakan bantuan microsoft excel.

Berikut adalah salah satu contoh excel dari Bisection Method

Bisection.png


b. False Position Metode false position atau sering disebut metode titik palsu adalah bentuk modifikasi dari bentuk bagi dua yang dinilai kurang efisien dalam menentukan titik nilai. Metode ini menggunakan pengertian grafis dengan menghubungkan nilai dari kedua titik dengan sebuah garis. Garis tersebut akan memotong di sumbu-x dan akan menjadi taksiran akar yang akan diperbaiki ( semakin mendekati nilai sebenarnya setelah dilakukan perhitungan berulang)

Falseposition.png

Dengan rumus mencari false position/Xr sebagai berikut:

False.png

Pada saat kemari, file excel saya untuk formula false position ini hilang namun berikut contoh formula excel yang saya dapatkan diinternet

False1.png

Open Method berbeda dengan bracketing method, open method hanya memerlukan 1 namun terkadang 2 nilai x perkiraan yang tidak mengurung akar persamaan sebenarnya. saat perhitungan divergen, maka nilai akan menjauhi akar sebenarnya. Namun saat perhitungan konvergen, akar akan ditemukan lebih cepat daripada bracketing method. Open method ini dibagi menjadi 3 metode yaitu : simple fixed point, Newton-Rhapson, dan Secant.

a. Simple Point

b. Newton-Rhapson

c. Secant



Tugas 1, video pembelajaran modelica


https://youtu.be/jqawTQHJBXU