Using Spring-Mass Models to Determine the Dynamic Response of Two-Story Buildings Subjected to Lateral Loads by S.T. De la Cruz, M.A. Rodríguez & V. Hernández

From ccitonlinewiki
Revision as of 15:47, 8 May 2020 by S.ichwan (talk | contribs) (Terjemahan)
Jump to: navigation, search

<- back to Studi kasus komputasi teknik

Knowledge Base

Case Study

2020-05-01 22 31 59-Microsoft Edge.png

2020-05-01 22 32 29-Microsoft Edge.png

2020-05-01 22 32 38-Microsoft Edge.png

2020-05-01 22 32 47-Microsoft Edge.png

2020-05-01 22 33 07-Microsoft Edge.png

2020-05-01 22 33 15-Microsoft Edge.png

2020-05-01 22 33 24-Microsoft Edge.png

2020-05-01 22 33 32-Microsoft Edge.png

Terjemahan

1. Pengantar

Model mekanis struktur dapat diwakili oleh sistem massa pegas (Brennan et al., 2008; Delhomme et al., 2007; Wu, 2004). Ketika berhadapan dengan struktur bangunan yang terkena beban gempa, single-story buildings (SSB) dan multi-story buildings (MSB) juga dapat diwakili oleh spring-mass models (SMM) (De la Cruz dan López-Almansa, 2006; Wilkinson dan Thambiratnam, 2001).

Sebagai contoh, pada Gambar. 1.1a SSB ditampilkan. Panjang gelagar (beam) diwakili oleh L dan ketinggian bingkai (frame) diwakili oleh H. Jika kekakuan lentur gelagar, diwakili oleh EIb, sangat kaku, bentuk terdistorsi SSB ketika mengalami percepatan tanah x (t) g ditunjukkan pada Gambar. 1.1b, di mana koordinat horisontal x berarti tingkat kebebasan bingkai tunggal.

SMM yang sesuai digambarkan pada Gambar 1.1c. Kuantitas m, c dan k, masing-masing, massa gelagar, redaman kental SSB dan kekakuan keseluruhan SSB. Dalam hal ini, kekakuan k ini adalah fungsi dari kekakuan lentur, EIc, dari kedua kolom, dan ketinggian H. Di sisi lain, jika EIb tidak lagi kaku secara tak terbatas, gerakan diasumsikan dari SSB ditunjukkan pada Gambar. 1.1d, dan SMM-nya ditunjukkan pada Gambar. 1.1e. Dalam hal ini, kekakuan aktual k 'adalah fungsi dari kedua kekakuan lentur, EIb dan EIc, dan panjang L dan tinggi H.

Persamaan gerak model yang ditunjukkan pada Gambar. 1.1c adalah sebagai berikut:

 Rumus 1-paper2.png

di mana titik atas mewakili turunan waktu x. Persamaan gerak model yang ditunjukkan pada Gambar. 1.1e adalah Persamaan yang sama. (1.1) asalkan kekakuan aktual k 'akan menggantikan k.

Keni-terjemahan 3.jpg

Keni-terjemahan 4.jpg

Gambar 1.2. Bangunan dua lantai dimodelkan sebagai sistem multi-derajat-kebebasan


Memperluas persamaan (1.2), kita mendapatkan:

Keni-terjemahan 5.jpg

di mana subskrip 1 dan 2, masing-masing merujuk ke lantai 1 dan lantai 2. Di sisi lain, persamaan gerak model yang ditunjukkan pada Gambar. 1.2e adalah

Keni-terjemahan 6.jpg

memperluas persamaan (1.4), kita mendapatkan

Keni-terjemahan 7.jpg

Matriks kekakuan yang baru, Keni-terjemahan 1.jpg umumnya diperoleh setelah membuat kondensasi matriks statis (Cheng, 2001). Perhatikan bahwa Persamaan. (1.2) tidak lagi valid untuk model yang ditunjukkan pada Gambar. 1.2e karena matriks kekakuan keseluruhan K* dalam Persamaan (1.4) diperoleh dengan menambahkan koefisien kekakuan baru Keni-terjemahan 2.jpg ke matriks K.


Sebagai catatan terakhir dari pengantar ini, kita tahu bahwa untuk SSB kedua kondisi ('shear building’, SB, dan ‘moment resistant frame‘, MRF) dapat direpresentasikan untuk persamaan gerak yang sama ―Eqn. (1.1)- karena kekakuan dari keseluruhan sistem, k, dapat dimodifikasi untuk memasukkan derajat kebebasan lateral dan rotasi dari simpul (De la Cruz dan López-Almansa, 2006). Untuk TSB, bagaimanapun, modifikasi serupa tidak dapat dilakukan karena kita berurusan dengan matriks kekakuan, alih-alih koefisien tunggal, yang merupakan kasus SSB.


Makalah ini membahas prosedur untuk mendapatkan respon dinamis dari Bangunan dua lantai (TSB) (baik SB atau MRF) yang diwakili oleh SMM ketika mengalami kekuatan lateral (mis., Angin, gempa bumi).


3. Applicaiton


Matriks M, C dan K * berikut milik TSB skala-turun yang sebenarnya dibangun untuk diuji

2020-05-08 01 13 37-Microsoft Edge.png

Untuk struktur ini, frekuensi sudutnya adalah ωn1 = 13.0982 rad/s and ωn2 = 42.7447 rad/s.

Akselerasi ground yang ditunjukkan pada Gambar 2.2 akan digunakan sebagai kekuatan pendorong eksternal untuk evaluasi numerik dari respons.



3.1.1. Konversi MFR ke SB

Nilai α dan β ditetapkan masing-masing sebesar 0,55 dan 1,20. Dengan nilai-nilai ini, dan menggunakan koefisien matriks M dan C, nilai-nilai berikut untuk γ dan ε diperoleh: γ = 0,57539 dan ε = 1,21528. Matriks M ’, K’ dan C ’ditemukan.

2020-05-08 02 04 41-Microsoft Edge.png

Untuk struktur 'yang dikonversi' ini, frekuensi sudutnya adalah: ω'n1 = 13.0811 rad / s dan ω'n2 = 43.3512 rad / s


3.1.2

2020-05-08 01 45 01-Microsoft Edge.png

3.1.2. Respons Perpindahan Menggunakan Merangkat Lunak Komersial

Data di atas dapat diimplementasikan dengan cepat ke dalam perangkat lunak komersial seperti ADINA (Bathe, 1996). Di ADINA, peredam viskos dan pegas (koefisien kekakuan) dapat dimasukkan sebagai elemen linier, membuat pemodelan sangat sederhana (De la Cruz et al., 2009). Selain itu, sejarah waktu respons yang diperoleh dengan ADINA sama dengan yang diperoleh pada ayat 3.1.2.

3.2. Pengujian Meja Goyang

SMM ditunjukkan pada Gambar. 1.2c dapat dibangun sehingga model fisik dari TSB yang sebenarnya (baik SB atau MRF) dapat diuji. Selain itu, perilaku nonlinear (mis., Kekakuan bi-linear) dapat disimulasikan dengan menggunakan perangkat gesekan yang melekat pada mata air (De la Cruz et al., 2010).

Judul .... Artikel2 1 hasil diskusi

Judul .... Artikel3 1 hasil diskusi

Judul .... Artikel4 1 hasil diskusi