Mohammad Zyan Beckham
Pada pertemuan pertama mata kuliah Metode Numerik, Bapak Dr. Ahmad Indra atau Aki DAI memperkenalkan dirinya, serta hadir juga Bapak Dr. Gunawan. Lalu dibahas tentang tujuan perkuliahan metode numerik, yaitu 1. memahami konsep/ prinsip & mampu menerapkannya, 2. menjadi orang yang lebih mengenal siapa dirinya. Untuk memenuhi atau mencapai tujuan perkuliahan itu diperlukan sebuah prasyarat, yaitu adalah Berakal. Dimana berakal yang dimaksud disini adalah berawal dari kata akal dan memiliki makna mempunyai akal, di mana akal ini mempunyai pengertian sebagai tali pengikat dari ilmu ilmu yang kita terima untuk digunakan. Akal adalah tali yang mengikat pikiran kita agar tetap pada koridor yang manusiawi. Akal ini juga menjadi pengikat antara ilmu yang kita terima dengan Tuhan YME, Allah SWT. Dalam Metode Numerik ini hal yang dipelajari adalah, 1. -Algoritma -Flowchart -Pemograman, EES, C# -Metode Interative, 2. Penyelesaian Persamaan-persamaan Aljabar Simultan, 3. Differensial & Integral, 4. Optimasi, 5. Studi Kasus. Pada mata kuliah Metode Numerik ini hanya Tuhan YME, Allah SWT. yang tahu, yang memberikan kita ilmu, Wallahu'alam bissowab. Persamaan aljabar yang dipakai dalam dunia teknik tidak semudah dalam pelajaran SMA atau pelajaran Aljabar Linear, banyak persamaan yang rumit dengan angka yang banyak, sehingga membutuhkan bantuan komputer untuk menghitung persamaannya. Pertemuan tersebut juga membahas satu contoh soal, yaitu lim x->1 x^2-1/x-1 , atau A=x^2-1/x-1 jika x=1 , mengapa jawabannya 2, mengapa jika x=1 dimasukkan ke persamaan tersebut hasilnya berbeda menjadi 0/0 mengapa disebut tidak terdefinsi, mengapa disebut infinite atau tidak terbatas, konsep dari infinite itu sendiri, berasal dari kata finite yang artinya terbatas. Selanjutnya juga dibahas mengenai tegangan atau stress tensor, di mana pembagian atau perataan beban pada suatu benda, atau contoh sebuah balok dari A ke B. Untuk referensi mata kuliah Metode Numerik ini bisa diambil dari 1. Advance Engineering Mathematics, oleh Edwin Kryzig, bisa juga dari referensi lainnya.
Hubungan mata kuliah metode numerik bisa dihubungkan dengan tiga hal. 1. Metnum dan Strutkur 2. Metnum dan Propulsi 3. Metnum dan Agama (menghitung zakat). Dalam pertemuan kali ini juga membahas mengenai Dimensi. Terdapat tiga dimensi. Satu dimensi,dua dimensi dan tiga dimensi. Contoh perhitungan pada satu dimensi ialah Bernouli. Langkah langkah dalam menyelesaikan masalah di teknik ialah,masalah di teknik,model matematis,metode numerik,algoritma(flow chart),program komputer,hasil numerik,visual,interpretasi/analisa,solusi engineering (teknik). Contoh menyelesaikan masalah diteknik adalah kekuatan rangka badan kapal terhadap keadaan laut tertentu Tahap penyelesaiian masalah adalah Metode teoritis,metode percobaan dan yang terakhir adalah metode komputasi. Metode komputasi adalah pendekatan dengan ilmu matematika dan dasar dasar fisika. Selanjutnya adalah algoritma. Langkah langkah penyelesaian masalah terdapat satu set instruksi untuk dikerjakan komputer. Terdapat juga program komputer. Salah satu contoh program komputer sendiri adalah python. Setelah program dibuat dilakukan juga simulasi untuk menjalankan pemograman. Setelah itu terdapat hasil numerik yaitu hasil dari pemograman berupa angka angka. Selanjutnya interpretasi dapat berupa hasil visual seperti perbedaan warna yang dianalisa oleh engineer. Yang terakhir juga membahas mengenai pressure drop. Contohnya energy loss dalam pipa. Contohnya adalah minyak membutuhkan energi untuk mendorong minyak dari sumur ke tempat pengolahan. Ketika terdapat hambatan seperti belokan,energi (gaya dorong) akan berkurang sehingga terjadi energy loss/pressure drop.
print("Tugas Metode Numerik \n Persamaan Linear Dua Variabel \n ax + by = c \n px + qy = r")
a = float(input("jika a =")) b = float(input("jika b =")) c = float(input("jika c =")) p = float(input("jika p =")) q = float(input("jika q =")) r = float(input("jika r ="))
if a == p == 0 :
i = b - q j = c - r y = j / i x = 0 print("maka nilai y =",y,"maka nilai x =",x)
elif b == q == 0:
n2 = a - p m2 = c - r x = m2 / n2 y = 0 print("maka nilai y =", y, "maka nilai x =", x)
elif a == p :
k = b - q l = c - r y = k / l x = (c - (b * y)) / a print("maka nilai y =" , y , "maka nilai x =" , x)
elif a == 0:
y = c / b x = (r - (q * y)) / p print("maka nilai y =", y , "maka nilai x =", x)
elif p == 0:
y = r / q x = (c - (b * y)) / a print("maka nilai y =", y , "maka nilai x =", x)
elif b == 0 :
x = c/a y = (r - (p*x))/ q print("maka nilai y =", y ,"maka nilai x =", x)
elif q == 0 :
x = r/p y = (c-(a*x))/b print("maka nilai y =", y ,"maka nilai x =", x)
elif a!=p :
k2 = a*p l2 = b*p q2 = c*p a2 = p*a b2 = q*a c2 = r*a z2 = l2 - b2 o2 = q2 - c2 y = o2 / z2 x = (q2 - (l2*y)) / k2 print("maka nilai y =", y ,"maka nilai x =", x)
input()
persamaan, matriks, penyelesaian, bagaimana cara python meneyelesaikan masalah tersebut, menggunakan program, bahasa python, matriks eleminasi gauss, aljabar linear, iterasi, pola dalam matriks