Report Tugas Kelompok 4 : Metode Numerik 2019
Anggota Kelompok:
- Fikridiya Bagusrana (1706036154)
- Rifky Ramadhan Prakoso (1706036330)
- Mochamad Farhan Zidny (1706986391)
- Andika Ridwan Pratama (1706986302)
Tugas 1
Berikut adalah governing equation pada mobil yang memiliki percepatan, gesekan, dan hambatan dengan udara.
Sebuah mobil memiliki 3 gaya yang bekerja padanya yaitu:
- F = m*a
- F gesek = m*g*cf
- F hambat = 0.5*cd*rho*area*vt^2
Dengan membagi ketiga gaya tersebut dengan massa didapatkan percepatan total
v'(t)= (F - (F gesek + F hambat))/m
Kemudian apabila disubsitusikan ke turunan dari kecepatan terhadap waktu
v'(t)= v(t)/t
dapat dicari waktu dengan cara membagi kecepatan dengan percepatan total, dimana percepatan total adalah turunan dari kecepatan terhadap waktu
t= v(t) / ((F - (F gesek + F hambat))/m)
Tugas 2
Tugas 3
Case Description
- Airfoil memiliki karakteristik aerodinamis dan merupakan benda yang sering digunakan contohnya pada pesawat
- Thrust pada pesawat berpengaruh pada effisiensi aerodinamis, maka dari itu dibutuhkan Cl/Cd yang kecil. Cl dan Cd tergantung pada angle of attack dari airfoil.
- Airfoil yang digunakan kali ini adalah airfoil NACA 0012
- Fluida udara yang melewat air foil steady flow dan incompressible, simulasi CFD dalam kondisi adiabatic
Kemudian Airfoil yang digunakan dilakukan variasi pada 6 angle of attack yang berbeda berupa (degrees):
- 0
- 2
- 4
- 6
- 8
- 10
Simulasi CFD SOF
Kemudian dilakukan simulasi airfoil dan didapatkan data sebagai berikut,
Kemudian menggunakan excel data tersebut direpresentasikan dalam bentuk grafik agar dapat melihat kurva, Grafik Drag
Grafik Lift
Dengan mencari rumus kurva pada excel, didapatkan rumus drag berupa y = 0,0099x2 - 0,0223x + 1,1466 dan rumus lift berupa y = -0,0203x2 + 0,6021x - 0,0401.
Optimasi
Dari kedua rumus diatas kemudian dimasukkan dalam program python dibawah ini:
import numpy as np from scipy.optimize import minimize def calc_drag(x):#drag x1 = x[0] drag = 0.0099*x1**2-0.0223*x1**1+1.1466 return drag def calc_lift(x): #lift x1 = x[0] lift = -0.0203*x1**2+0.6021*x1**1-0.0401 return lift def objective(x): #volume yang diminimalkan return calc_drag(x) def constraint1(x): #variable SUDUT yang meminimalkan persamaan garis drag return 90 - calc_drag(x) def constraint2(x): #variable SUDUT yang meminimalkan persamaan garis lift return 90 - calc_lift(x) con1=({'type':'ineq','fun':constraint1}) con2=({'type':'ineq','fun':constraint2}) cons = (con1,con2) x1_guess = 50 x0 = np.array([x1_guess]) sol = minimize(objective,x0, method='SLSQP',constraints=cons, options={'disp':True}) xopt = sol.x forceopt = -sol.fun dragopt = calc_drag(xopt) # drag optimal liftopt = calc_lift(xopt) # lift optimal print ('sudut optimal = '+str(-xopt[0])) print ('total force optimal = '+str(forceopt)) print ('drag force optimal = '+str(-dragopt)) print ('lift force optimal = '+str(liftopt)) # In[10]: import numpy as np from scipy.optimize import minimize def calc_drag(x):#drag x1 = x[0] drag = 0.0099*x1**2-0.0223*x1**1+1.1466 return drag def calc_lift(x): #lift x1 = x[0] lift = -0.0203*x1**2+0.6021*x1**1-0.0401 return lift def objective(x): #volume yang diminimalkan return calc_lift(x) def constraint1(x): #variable SUDUT yang meminimalkan persamaan garis drag return 90 - calc_drag(x) def constraint2(x): #variable SUDUT yang meminimalkan persamaan garis lift return 90 - calc_lift(x) con1=({'type':'ineq','fun':constraint1}) con2=({'type':'ineq','fun':constraint2}) cons = (con1,con2) x1_guess = 50 x0 = np.array([x1_guess]) sol = minimize(objective,x0, method='SLSQP',constraints=cons, options={'disp':True}) xopt = sol.x forceopt = -sol.fun dragopt = calc_drag(xopt) # drag optimal liftopt = calc_lift(xopt) # lift optimal print ('sudut optimal = '+str(xopt[0])) print ('total force optimal = '+str(-forceopt)) print ('drag force optimal = '+str(dragopt)) print ('lift force optimal = '+str(liftopt))
Kemudian setelah program dijalan didapatkan hasil sebagai berikut:
Optimization terminated successfully. (Exit mode 0) Current function value: 1.1340421717179265 Iterations: 5 Function evaluations: 15 Gradient evaluations: 5 sudut optimal = -1.1262713580043062 total force optimal = -1.1340421717179265 drag force optimal = -1.1340421717179265 lift force optimal = 0.6122776950656171 Optimization terminated successfully. (Exit mode 0) Current function value: -128.89494468045336 Iterations: 7 Function evaluations: 24 Gradient evaluations: 7 sudut optimal = 95.86991386912578 total force optimal = -128.89494468045336 drag force optimal = 90.00000073492711 lift force optimal = -128.89494468045336