Dimas Fahrul Rozi

From ccitonlinewiki
Revision as of 14:34, 17 September 2019 by Dimas fahrul rozi (talk | contribs)
Jump to: navigation, search

Profil

Nama : Dimas fahrul rozi

NPM : 1706986340

Program studi : Teknik mesin

Selasa, 3 September 2019

Pertama merupakan penjelassan dari metode numerik Metode Numerik adalah teknik yang digunakan untuk memformulasikan persoalan matematika sehingga dapat dipecahkan dengan operasi perhitungan biasa (+, – , / , *).

Metode Numerik dapat menjadi solusi dalam permasalahan perhitungan matematika yang tidak dapat diselesaikan dengan Metode Analitik. Metode Analitik atau Metode Exact adalah teknik yang digunakan pada sejumlah persoalan yang terbatas dan menghasilkan solusi exact atau solusi sejati.

Dalam peranan Komputer pada Metode Numerik :

Perhitungan dalam metode numerik berupa operasi aritmatika dan dilakukan berulang kali, sehingga dengan adanya komputer dapat mempercepat proses perhitungan tanpa menghasilkan kesalahan. Dengan komputer kita dapat mencoba berbagai kemungkinan solusi yang terjadi akibat perubahan beberapa parameter. Solusi yang diperoleh juga dapat ditingkatkan ketelitiannya dengan mengubah nilai parameter.

Kemudian Deret taylor dan Deret Mclaurin.

Deret taylor Deret Taylor dalam matematika adalah representasi fungsi matematika sebagai jumlahan tak hingga dari suku-suku yang nilainya dihitung dari turunan fungsi tersebut di suatu titik. Deret ini dapat dianggap sebagai limit polinomial Taylor.


Taylor formula.png


Deret Maclaurin

Deret MacLaurin merupakan suatu fungsi f(x) yang memiliki turunan f'(x), f”(x), f”'(x), dan seterusnya yang kontinyu dalam interval I dan a, x I maka untuk x disekitar a yaitu |x – a| < , f(x) dapat diekspansi kedalam Deret Taylor


Maclaurin.png


Dengan menggunakan deret taylor dan deret maclaurin kami mencari nilai x=phi/7


Selasa, 11 September 2019

Di pertemuan kedua kami di ajarkan tentang pseucode

Pengertian Pseudocode

 adalah sebuah kode yang digunakan untuk menulis sebuah algoritma dengan cara yang bebas yang tidak terikat dengan bahasa pemrograman tertentu.

Pseudo-code berisikan langkah-langkah untuk menyelesaikan suatu permasalahan [hampir sama dengan algoritma], hanya saja bentuknya sedikit berbeda dari algoritma.

Pseudo-code menggunakan bahasa yang hampir menyerupai bahasa pemrograman. Selain itu biasanya pseudo-code menggunakan bahasa yang mudah dipahami secara universal dan juga lebih ringkas dari pada algoritma.

        Pseudo berarti imitasi dan code berarti kode yang dihubungkan dengan instruksi yang ditulis dalam bahasa komputer (kode bahasa pemrograman). Apabila diterjemahkan secara bebas, maka pseudocode berarti tiruan atau imitasi dari kode bahasa pemrograman.

Pada dasarnya, pseudocode merupakan suatu bahasa yang memungkinkan programmer untuk berpikir terhadap permasalahan yang harus dipecahkan tanpa harus memikirkan syntax dari bahasa pemrograman yang tertentu. Tidak ada aturan penulisan syntax di dalam pseudocode. Jadi pseudocode digunakan untuk menggambarkan logika urut-urutan dari program tanpa memandang bagaimana bahasa pemrogramannya. Walaupun pseudocode tidak ada aturan penulisan syntax, di dalam buku ini akan diberikan suatu aturan-aturan penulisan syntax yang cukup sederhana agar pembaca dapat lebih mudah dalam mempelajari algoritma-algoritma yang ada di dalam buku ini. Pseudocode yang ditulis di dalam buku ini akan menyerupai (meniru) syntax-syntax dalam bahasa Pascal. Namun dibuat sesederhana mungkin sehingga tidak akan ada kesulitan bagi pembaca untuk memahami algoritma-algoritma dalam buku ini walaupun pembaca belum pernah mempelajari bahasa Pascal. Contoh algoritma menentukan bilangan terbesar dari tiga bilangan yang ditulis dalam bentuk pseudocode bergaya buku ini.

Pseucode.png


selasa,17 September 2019

Turunan numerik

Turunan numerik ialah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk tabel Dalam melakukan perhitungan turunan metode numerik, intinya kita sangat dianjurkan untuk menggunakan alat hitung baik kalkulator maupun komputer. Kenapa ?, karena kita akan berurusan dengan angka yang memiliki banyak koma. Kemudian kita juga mendapat data-data berupa nilai-nilai suatu titik (nilai x dan y(f(x)). Kemudian kita akan mengidentifikasi metode yang akan kita gunakan berdasarakan data yang ada atau nilai yang akan kita cari.

Metode yang kita gunakan ada 3, yaitu beda maju, beda mundur, dan beda pusat. Tetapi rumus yang digunakan berbeda untuk rumus turunan ke-1 dan ke-2. Perlu diingatkan juga bahwa jarak antar titik yang akan digunakan dalam perhitungan haruslah sama.

Turunan ke-1. Metode Beda Maju : Untuk metode beda maju intinya berdasarkan grafik berikut : Beda maju.png Nah, pada grafik berikut, diibaratkan kita mencari nilai turunan pertama di titik x0 atau f’(x0). Maka kita bisa mencari nilai turunannya dengan rumus berikut :

f’(x0) = f(x1)-f(x0)/(x1-x0).

Nah, untuk x1-x0 biasanya sering dikenal dengan h (selisih antara dua buah titik terdekat) *aturan h berlaku untuk semua metode.

2. Metode Beda Mundur Bisa diperhatikan terlebih dahulu grafiknya : Beda mundur.png Pada grafik berikut, dengan menggunakan metode beda mundur. Kita bisa mencari nilai dari f’(x0) menggunakan rumus berikut :

f’(x0) = f(x0)-f(x-1)/(x0-x-1)

3. Metode beda pusat Bisa diperhatikan terlebih dahulu grafik berikut :

Beda pusat.png Untuk rumus beda pusat sendiri adalah sebagai berikut :

f’(x0) = f(x+1)-f(x-1)/(x+1-x-1)