Rivanza Rahmantiar Maftuchan
Halo perkenalkan saya Rivanza Rahmantiar Maftuchan . Saya lahir di Jakarta , 29 April 2003 . saya memiliki riwayat bersekolah di SMPN 68 Jakarta , SMAN 55 Jakarta dan akhirnya berkuliah di Universitas Indonesia prodi Teknik Perkapalan 2021
Resume perkuliahan (26 Mei 2023)
Pada tanggal 26 Mei 2023 Pak Dai memberikan perkuliahan terkait dengan Metode Numerik yang berkaitan dengan hakikat atau fitrah manusia sebagai makhluk yang senantiasa memiliki agama . Dijelaskan oleh beliau bahwa agama dan metode numerik harus sama-sama bisa dicerna agar mendapat ketenangan . Selain itu beliau juga mengajarkan konsep agar ilmu duniawi bisa selaras dengan ilmu akhirat , karena mungkin ilmu duniawi lah yang akan mengantarkan kita pada kesadaran tentang adanya tuhan dan penciptaan alam semesta agra kita berpikir dan lebih mendekatkan kepada tuhan yang maha esa .
Untuk konsep dari pembelajaran pak Dai sendiri menggunakan konsep pembelajaran diskusi agar mahasiswa lebih aktif dalam mencari referenis , jurnal maupun situs terkait mata kuliah metode numerik yang sedang diampuh .
Tugas 1 Juni 2023 Design and Optimization of Pressurized Hydrogen Storage
Basic Design
Capacity : 1 L
Pressure : 8 bar
Cost should not exceed Rp. 500000
1. System Design: a. Storage Tank: The storage tank is a critical component of the pressurized hydrogen storage system. It must be designed to withstand high-pressure conditions, ensuring safety and durability. Various materials and designs are considered, such as composite materials or metal alloys, to achieve the required strength and weight considerations.For this case i choose metal alloys
b. Safety Measures: Safety is of utmost importance when dealing with pressurized hydrogen. The system design incorporates safety measures such as - pressure relief devices, -leak detection systems -structural integrity assessments to ensure safe operation and prevent accidents.
c. Compression System: A compression system is essential for filling the storage tank with hydrogen gas. The design and optimization of the compression system consider factors such as compression efficiency, energy consumption, and system reliability.
d. Control and Monitoring System: An efficient control and monitoring system is implemented to regulate the pressure inside the storage tank, monitor hydrogen levels, and ensure safe operation. Advanced sensors and control algorithms are employed to maintain optimal operating conditions.
2. Optimization Process:
a. Modeling and Simulation: A mathematical model is developed to simulate the pressurized hydrogen storage system's performance.
b. Optimization Algorithms: Optimization algorithms, such as genetic algorithms or particle swarm optimization, are applied to find the optimal design and operational parameters.
c. Performance Analysis: The optimized design is evaluated through performance analysis.
d. Sensitivity Analysis: Sensitivity analysis is conducted to understand the system's response to variations in input parameters, such as hydrogen demand, operating conditions, and material properties
3. Results and Implementation:
The optimization process provides insights into the optimal design and operational parameters of the pressurized hydrogen storage system. The results highlight improvements in storage capacity, system efficiency, and safety. The findings guide the implementation of the optimized system, considering technical feasibility, economic viability, and regulatory compliance.
4. Conclusion:
The case study demonstrates the importance of design and optimization in pressurized hydrogen storage systems. By considering factors such as storage tank design, safety measures, compression systems, and control systems, the project achieves an optimized storage system that maximizes storage capacity, ensures safety, and improves overall system efficiency.
Tugas besar
Pada kesempatan kali ini saya akan mendemonstrasikan cara perhitungan dari data :
Capacity : 1 L
Pressure : 8 bar
Cost should not exceed Rp. 500000
Saya menggunakan Stainless steel 304 dengan kebutuhan ultimate tensille strength : 505 mpa dan tensille yield strength sebesar 515 mpa . Kita akan mengetahui dimensi yang ada pada tabung ini mencakup panjang , lebar , luas permukaan , dan volume dari tabung hydrogen storage ini .
import math
- Parameter desain
volume = 1 # Volume hydrogen storage dalam liter tekanan = 8 # Tekanan hydrogen storage dalam bar biaya = 500000 # Biaya hydrogen storage dalam Rupiah
- Properti material
yield_strength = 205 # Yield strength dalam MPa ultimate_tensile = 515 # Ultimate tensile strength dalam MPa
- Konversi satuan
volume_m3 = volume / 1000 # Mengubah volume menjadi m^3 tekanan_pa = tekanan * 100000 # Mengubah tekanan menjadi Pa
- Menghitung panjang tabung
panjang_tabung = (4 * volume_m3 * ultimate_tensile) / (math.pi * tekanan_pa * yield_strength)
- Menghitung lebar tabung
lebar_tabung = math.sqrt((4 * volume_m3) / (math.pi * panjang_tabung))
- Menghitung tinggi tabung
tinggi_tabung = 2 * lebar_tabung
# Menghitung luas permukaan tabung luas_permukaan = 2 * math.pi * lebar_tabung * (lebar_tabung + tinggi_tabung)
- Menghitung volume tabung
volume_tabung = math.pi * (lebar_tabung**2) * tinggi_tabung
- Menghitung radius tabung
radius_tabung = lebar_tabung / 2
- Menampilkan hasil perhitungan
print('Panjang Tabung:', panjang_tabung, 'm') print('Lebar Tabung:', lebar_tabung, 'm') print('Tinggi Tabung:', tinggi_tabung, 'm') print('Luas Permukaan:', luas_permukaan, 'm^2') print('Volume Tabung:', volume_tabung, 'm^3') print('Radius Tabung:', radius_tabung, 'm')
Kemudian hasil yang didapat dari tabung tersebut adalah :
Panjang Tabung: 3.998282716698835e-09 m
Lebar Tabung: 564.310731726544 m
Tinggi Tabung: 1128.621463453088 m
Luas Permukaan: 6002577.031324962 m^2
Volume Tabung: 1129106212.2639785 m^3
Radius Tabung: 282.155365863272 m