Akbar Fadilla
Biodata Diri
Muhammad Akbar Fadilla Atha'lla
2106727872
Contents
Manometer
Manometer analog bekerja dengan menggunakan perbedaan ketinggian fluida sebagai indikator perbedaan tekanan. Manometer biasanya berbentuk seperti tabung-U dengan kedua ujung yang terbuka. Apabila terjadi perbedaan tekanan, fluida pada ujung tabung yang memiliki tekanan lebih tinggi akan memiliki tinggi yang lebih pendek, begitu pun sebaliknya. Perubahan tekanan sebanding proporsional dengan perubahan tinggi. Sehingga dapat dihitung perubahan tekanan berdasarkan perubahan tinggi berdasarkan rumus:
ΔP = ρgh
Dengan ρ adalah densitas fluida, g adalah percepatan gravitasi bumi, dan h adalah perbedaan ketinggian yang dialami. Selain itu, tekanan dapat juga didapatkan dengan membaca skala yang terdapat pada tabung-U manometer.
Ada beberapa hal yang mempengaruhi tekanan. Ketinggian mempengaruhi hasil perhitungan tekanan karena pada ketinggian tinggi, tekanan atmosfer berkurang, pun juga sebaliknya. Selain itu, temperatur juga mempengaruhi tekanan, kenaikan pada temperatur sebanding dengan kenaikan pada tekanan. Ada juga kecepatan fluida di lingkungan manometer. Sesuai dengan prinsip Bernoulli, pada aliran fluida tinggi terdapat tekanan yg lebih rendah. Hal ini dapat mempengaruhi pembacaan manometer.
Satuan tekanan pada manometer adalah miliBar, sedangkan satuan SI untuk tekanan ada pascal (Pa).
1. Hasil Pengukuran P1, P2, dan P2(Manometer Tipe U)
Salah satu katup terbuka
P1: 10 mbar = 1000 Pa
P2: 1,5 mbar = 150 Pa
P2 (tipe U): 9 mmH2O = 88.25985 Pa
Kedua katup terbuka
P1: 8,5 mbar = 850 Pa
P2: 1,2 mbar = 120 Pa
P2 (tipe U): 12 mmH2O = 117.6798 Pa
2. Perbandingan
P1 katup tertutup: P1 katup terbuka = 10 : 8.5 = 20 : 17
P2 katup tertutup : P2 katup terbuka = 1.5 : 1.2 = 5 : 4
P2 (tipe U) katup tertutup : P2 (tipe U) katup terbuka = 12 : 9 = 4 : 3
ChatGPT on Pressure
Pada tanggal 3 Maret 2023, kami belajar mengenai tekanan pada suatu penampang. Tekanan tersebut dapat dihitung dengan:
P = ρ.g.h
dimana ρ adalah densitas fluida, g adalah percepatan gravitasi, dan h adalah kedalaman.
ChatGPT:
Q: What is a hydrostatic force
A: A hydrostatic force is the pressure exerted by a stationary fluid on a surface that is submerged in it. This force is perpendicular to the surface and is proportional to the density of the fluid, the depth of the surface below the fluid level, and the surface area. The hydrostatic force can be calculated using the formula F = ρghA, where F is the force, ρ is the density of the fluid, g is the acceleration due to gravity, h is the depth of the surface below the fluid level, and A is the surface area. The hydrostatic force plays an important role in a wide range of engineering applications, such as the design of dams, pipelines, and hydraulic systems.
Q: Explain what is buoyancy in fluid mechanics
A: Buoyancy is a force exerted on an object when it is submerged in a fluid, either partially or fully. The force is exerted in an upward direction and is equal to the weight of the fluid displaced by the object. This force is also known as the buoyant force and it can cause an object to float or sink depending on its density relative to the fluid.
According to Archimedes’ principle, the buoyant force on an object is equal to the weight of the fluid displaced by that object. If the object weighs less than the fluid it displaces, the buoyant force will be greater than the object’s weight, causing it to float. Conversely, if the object weighs more than the fluid it displaces, it will sink.
Buoyancy plays an important role in various applications, including ship design, underwater exploration, and the behavior of gases in the atmosphere.
Tugas Praktek
1. Manometer Analog Prinsip kerja dari manometer analog sendiri didasarkan dengan hukum Hooker, dimana bahwa bahwa gaya yang diperlukan untuk memperluas atau mengompres skala pegas secara linier dan berkaitan dengan jarak ekstensi atau kompresi. Biasanya manometer analog menggunakan tabung Bourdon sebagai mekanisme utamanya. Tabung Bourdon sendiri berfungsi dengan cara mengambil tekanan den mengubahnya menjadi energi mekanik. Energi ini menggerakkan tmbol di pengukur dan menampilkan jumlah tekanan di dalam sistem. Tabung Bourdon memiliki beberapa konfigurasi seperti melengkung, heliks, dan spiral. Operasi dari tabung Bourdon ini cukup sederhana. Tabung Bourdon sendiri terdiri dari tabung logam setengah lingkaran dan datar, dipasang di satu ujung dan melekat pada mekanisme tuas sensitif di ujung lainnya. Ketika tekanan meningkat di dalam tabung, gaya cairan mencoba untuk meluruskan tabung yang melengkung. Tabung kemudian menarik diri dari tuas yang terhubung ke jarum di layar yang menunjukkan tekanan pada cairan.
2. Pipa U Prinsip kerja dari manometer tipe U adalah terdapa suatu pipa yang berbentuk U dimana pipa tersebut diisi dengan fluida seperti air atau merkuri. Air dan merkuri ini nantinya berfungsi sebagai media untuk menghantarkan tekanan. Kedua ujung dari pipa ini terbuka dan menyebabkan tekanan di kedua ujung pipa adalah sama. Apabila pipa U dialiri oleh tekanan, maka salah satu ujung dari pipa U yang terhubung dengan sumber tekanan yang lebih tinggi dari atmosfir, akan mengalami perubahan ketinggian menjadi lebih rendah dan ujung pipa U yang terbuka dan terhubung dengan atmosfir menjadi lebih tinggi. Dengan melihat perbedaan ketinggian dari kedua ujung, maka dapat diketahui besarnya tekanan dengan cara menggunakan rumus
3. Pressure Transducer Perangkat yang mengubah pengukuran tekanan fisik menjadi sinyal listrik yang dapat diukur atau direkam oleh peralatan elektronik. Transduser terdiri dari elemen penginderaan, yang biasanya berupa diafragma logam tipis, dan sirkuit yang mengubah defleksi diafragma menjadi sinyal listrik. Ketika tekanan diterapkan ke elemen penginderaan, terjadi defleksi, menyebabkan perubahan resistansi atau kapasitansi elemen. Perubahan ini dideteksi oleh sirkuit transduser, yang menghasilkan sinyal listrik yang sesuai dengan tekanan yang diukur.
4. Studi Kasus Reaksi Fluida Terhadap Tekanan 300 Pa
P = ρgh
Keterangan:
P adalah beda tekanan [Pa]: P= 300 Pa
ρ adalah massa jenis fluida [kg/m^3]
g adalah percepatan gravitasi [m/s^2]: g= 9,8 m/s^2
h adalah perbedaan ketinggian fluida pada kedua ujung tabung manometer [m], maka ketinggian fluida dapat dihitung sebagai berikut:
h = P / (ρ * g)
sehingga hasil perhitungan perbedaan ketinggian tiap fluida terhadap tekanan yang diberikan adalah:
Fluida Air (ρ= 1000 kg/m^3)
h = 300/(1000*9,8) = 0,0306 m = 3,06 cm
Fluida Raksa (ρ= 13.600 kg/m^3)
h = 300/(13600*9,8) = 0,0022 m = 0,22 cm
Fluida Minyak (ρ= 800 kg/m^3)
h = 300/(800*9,8) = 0,0382 m = 3,82 cm
Tugas 2
Tugas Kinematika
1. Apa itu aliran steady state? Berikan contohnya dalam fenomena nyata?
Aliran steady state adalah jenis aliran fluida di mana kecepatan, tekanan, dan sifat-sifat lain dari fluida tidak berubah dengan waktu di suatu lokasi tertentu dalam sistem. Dengan kata lain, aliran steady state adalah aliran yang stabil dan tidak berubah dengan waktu. Contoh fenomena aliran steady state dalam kehidupan sehari-hari adalah aliran air melalui pipa yang tidak bocor dan tidak ada perubahan dalam kecepatan atau tekanan air di dalam pipa. Demikian juga, aliran udara di sekitar objek yang diam, seperti mobil atau pesawat terbang yang sedang terbang di ketinggian konstan, dapat dianggap sebagai aliran steady state karena kecepatan dan tekanan udara di sekitar objek tersebut tidak berubah dengan waktu. Dalam kedua contoh ini, aliran steady state memungkinkan sistem untuk berfungsi dengan stabil dan efisien.
2. Apa itu Lagrange Method dan Eulerian Method?
Langrange Method
Model gerakan partikel fluida individual di sepanjang jalurnya dalam ruang dan waktu. Pendekatan ini memperhatikan partikel fluida secara individual dan mempelajari perubahan kecepatan dan posisi partikel dari waktu ke waktu. Metode Lagrange sangat berguna dalam memodelkan aliran yang kompleks dan tidak teratur, seperti turbulensi, karena dapat mengikuti pergerakan partikel fluida yang sangat tidak teratur.
Eulerian Method
Model aliran fluida sebagai aliran massa melalui suatu daerah atau volume tertentu dalam ruang. Pendekatan ini memfokuskan pada pengukuran sifat-sifat fluida seperti kecepatan, tekanan, dan kepadatan di suatu lokasi dalam ruang dan waktu tertentu. Metode Eulerian sangat berguna dalam memodelkan aliran yang dapat dijelaskan secara teratur dan lebih mudah dimengerti, seperti aliran melalui pipa atau sepanjang bidang datar.
3. Apa perbedaan antara aliran uniform dan aliran non-uniform? Berikan contohnya dalam fenomena nyata
Uniform Flow
Properties fluida seragam pada sebuah ruang. Kecepatan tidak berubah oleh lokasi (ruang). Gradien kecepatan sepanjang aliran jalan adalah nol
Aliran seragam adalah jenis aliran fluida di mana kecepatan fluida konstan di setiap titik di medan aliran. Dengan kata lain, semua partikel fluida bergerak dengan kecepatan dan arah yang sama. Aliran seragam sering diasumsikan dalam perhitungan dan analisis mekanika fluida, karena merupakan model sederhana yang dapat membantu menyederhanakan sistem fluida yang kompleks. Misalnya, aliran seragam sering diasumsikan dalam desain saluran terbuka, seperti sungai atau kanal, di mana kecepatan aliran diasumsikan konstan di seluruh penampang saluran.
Non-uniform Flow
Kecepatan berubah berdasarkan lokasi (ruang). Properties berubah sepanjang lintasan
Aliran tidak seragam adalah jenis aliran fluida di mana kecepatan fluida bervariasi pada titik yang berbeda di bidang aliran. Dengan kata lain, partikel fluida bergerak dengan kecepatan dan arah yang berbeda pada lokasi yang berbeda di medan aliran. Aliran tidak seragam dapat disebabkan oleh berbagai faktor, seperti perubahan luas penampang saluran aliran, adanya hambatan atau batas, atau variasi sifat fluida, seperti viskositas atau massa jenis. Aliran tidak seragam juga dapat disebabkan oleh faktor eksternal, seperti perubahan laju input atau output fluida, atau perubahan lingkungan eksternal, seperti perubahan temperatur atau tekanan.
4. Apa itu aliran laminar dan aliran turbulen? Apa perbedaan keduanya?
Laminar Flow
Aliran laminar adalah jenis aliran fluida yang terjadi ketika fluida bergerak dalam lapisan atau aliran yang halus dan teratur, dengan sedikit atau tanpa pencampuran antara lapisan yang berdekatan. Dalam aliran laminar, partikel fluida bergerak dalam garis lurus atau jalur paralel, dan alirannya ditandai dengan kecepatan rendah dan tingkat organisasi yang tinggi. Aliran laminar biasanya diamati pada cairan dengan viskositas rendah, seperti udara atau air, yang mengalir melalui saluran atau tabung sempit, dan sering dikontraskan dengan aliran turbulen, yang lebih kacau dan acak. Aliran laminar juga dicirikan oleh bilangan Reynolds yang rendah, yang merupakan parameter tanpa dimensi yang menggambarkan rasio gaya inersia terhadap gaya viskos dalam fluida.
Turbulent FLow
Aliran turbulen adalah jenis aliran fluida yang ditandai dengan gerakan partikel fluida yang kacau dan tidak teratur. Dalam aliran turbulen, partikel fluida bergerak dalam arah yang acak dan tidak dapat diprediksi, dan terjadi pencampuran yang signifikan antara lapisan fluida yang berdekatan. Aliran turbulen sering diamati pada cairan dengan viskositas tinggi, seperti minyak atau tetes tebu, atau pada aliran dengan kecepatan tinggi, seperti yang ditemukan di sungai, lautan, atau di atmosfer. Aliran turbulen juga ditandai dengan bilangan Reynolds yang tinggi, yang merupakan parameter tak berdimensi yang menggambarkan rasio gaya inersia terhadap gaya viskos dalam fluida.
5. Apa itu streamline, streakline, dan pathline?
Streamline
Garis imajiner dalam aliran fluida yang menggambarkan arah dan kecepatan aliran fluida pada setiap titik dalam ruang. Dalam aliran steady state, setiap partikel fluida akan mengikuti garis streamline yang sama. Streamline sangat berguna dalam memahami aliran fluida dan dapat digunakan untuk menggambarkan pola aliran dan memprediksi gerakan fluida di sekitar benda.
Streakline
Streakline adalah garis yang dibentuk oleh partikel fluida yang melewati titik dalam ruang pada waktu tertentu. Streakline menggambarkan jalur yang diikuti oleh partikel fluida dalam waktu tertentu, dan garis ini dapat memberikan informasi tentang bagaimana partikel fluida bergerak dan bagaimana aliran fluida berubah dari waktu ke waktu.
Pathline
Pathline adalah garis yang menggambarkan jalur sebenarnya yang diikuti oleh partikel fluida tertentu dalam aliran fluida dari waktu ke waktu. Pathline tidak sama dengan garis streamline karena garis streamline hanya menunjukkan arah dan kecepatan aliran fluida pada setiap titik dalam ruang, sedangkan pathline menggambarkan posisi sebenarnya partikel fluida dari waktu ke waktu. Pathline berguna dalam mempelajari perilaku partikel fluida individual dalam aliran fluida dan dapat digunakan untuk memprediksi pergerakan partikel fluida di masa depan.
Tugas Kinematika 2
Praktikum AirFlow Reynolds Transport
Optimisasi Penyimpanan Hidrogen Bertekanan
Study Case: Desain dan optimisasi penyimpanan 1 liter hidrogen bertekanan 8 Bar, dengan biaya produksi maksimal Rp. 500.000,-
Berikut adalah beberapa langkah yang dapat diambil untuk melakukan optimasi:
Bahan Tangki: Pilih bahan tangki yang cocok dengan karakteristik hidrogen, memiliki kekuatan yang cukup, dan dapat diproduksi dengan biaya terjangkau. Beberapa pilihan bahan yang umum digunakan untuk tangki hidrogen adalah serat karbon, aluminium, atau baja. Adapun 4 tipe tangki penyimpanan yang ada, dengan tipe 1 merupakan hanya logam, tipe 2 dan 3 merupakan campuran logam dan komposit, tipe 4 merupakan hanya komposit.
Desain Tangki: Pilih desain tangki yang efisien dan sesuai dengan kebutuhan. Desain yang baik dapat mengoptimalkan ruang dalam tangki dan meminimalkan kebocoran. Bentuk tangki yang umum digunakan adalah silinder dengan ujung hemispherical atau torispherical.
Sistem Penyimpanan: Pertimbangkan sistem penyimpanan yang tepat untuk tangki hidrogen. Beberapa pilihan pertimbangkan yang ada adalah penggunaan bahan yg kuat untuk menahan tekanan hidrogen, proses cryogenic yang dapat memperkecil tekanan, dan penggunaan material penyerap seperti logam atau paduan yang dapat menyerap dan melepaskan hidrogen dengan cepat.
Regulasi Tekanan: Pastikan tangki dilengkapi dengan sistem pengatur tekanan yang aman dan efisien. Hal ini akan membantu menjaga tekanan hidrogen tetap stabil dalam batas yang diinginkan.
Biaya Produksi: Selama proses optimasi, perhatikan biaya produksi. Pilih bahan dan desain tangki yang dapat diproduksi dengan biaya terjangkau sesuai dengan batasan anggaran maksimal yang telah ditentukan.
Uji Coba dan Validasi: Setelah mendesain tangki hidrogen, lakukan uji coba dan validasi untuk memastikan tangki memenuhi persyaratan keamanan, efisiensi, dan performa yang diharapkan.
Dari pilihan bahan, bentuk, dan juga sistem yang sudah diuraikan di atas, saya berhipotesis bahwa pilihan yang paling memungkinkan adalah menggunakan sistem wadah tanki dengan material kuat untuk menyimpan gas hidrogen bertekanan.
Minimum Requirement of Hydrogen Storage:
1. 1 Liter of Hydrogen
2. 8 Bar of pressure
3. Max cost of 500.000,00 IDR
To determine the correct design for the allocated cost, an analysis of the optimum surface area in respect to the volume is done in a numerical method. Using a simple python program:
import numpy as np from scipy.optimize import minimize
def objective(x): radius, height = x surface_area = 2 * np.pi * radius * (radius + height) return surface_area
def volume_constraint(x): radius, height = x volume = np.pi * radius**2 * height return volume - 1000
x0 = [1.0, 10.0] bounds = [(0, None), (0, None)] constraint = {'type': 'eq', 'fun': volume_constraint} problem = minimize(objective, x0, bounds=bounds, constraints=constraint)
optimized_radius = problem.x[0] optimized_height = problem.x[1] optimized_surface_area = problem.fun
print("Optimization Results:") print(f"Optimized Radius: {optimized_radius:.2f} cm") print(f"Optimized Height: {optimized_height:.2f} cm") print(f"Optimized Surface Area: {optimized_surface_area:.2f} cm^2")
We know that