Ariel Ilyasa Fadhilah
Introduction
Assalamualaikum, Perkenalkan saya Ariel Ilyasa Fadhilah NPM 2106634875 sebagai mahasiswa Teknik Perkapalan Universitas Indonesia
Pertemuan 26/05/2023
Design & Optimization of Pressurized Hydrogen Storage
Objective : Design & Optimization of Pressurized Hydrogen Storage
Spesifications :
Capacity : 1 Liter
Pressure Level : 8 bar
Limitation : Cost should not exceed Rp500.000
Week 1 Progress
Before i get to work on this task, For me i consciously think and feel the need to be assisted for this task, I chose the help of an AI platform and ChatGPT was chosen to assist me for this task because of its vast knowledge and the ability to provide me various topics with the explanation that easy to understand. The prompt that i used for this design & optimization of pressurized hydrogen storage was Explain to me comprehensively the factors and processes in designing and optimizing a compact pressurized hydrogen storage with limited cost"
After getting the result, Here's the comprehensive overview of the key considerations: Storage Method
Pressurized hydrogen storage involves storing hydrogen gas at high pressures. One common method is using high-pressure cylinders made of lightweight, strong materials such as carbon fiber composites or advanced metals like aluminum alloys. Other options include metal hydride storage or cryogenic liquid hydrogen storage, but we'll focus on pressurized storage for this explanation. Storage Capacity
Determine the required storage capacity in terms of hydrogen mass or volume. This will depend on the application and the desired range or usage time before refueling. Consider factors such as vehicle range, energy demand, or the specific requirements of the system you're designing. Pressure Level
Select an appropriate pressure level based on safety, storage efficiency, and system requirements. Higher pressures provide greater storage capacity but require stronger materials, leading to increased costs. Common pressure levels for pressurized hydrogen storage range from 350 bar (5,076 psi) to 700 bar (10,152 psi). Material Selection
Choose materials that can withstand the desired pressure level while minimizing weight and cost. Carbon fiber composite materials are widely used due to their high strength-to-weight ratio, but they can be expensive. Aluminum alloys provide a good balance between strength, weight, and cost. Tank Design
Optimize the tank design to maximize storage capacity while adhering to safety regulations and minimizing costs. Consider factors such as tank shape, volume, thickness, and the number of tanks required. Advanced design techniques like finite element analysis can help determine the optimal tank shape and thickness distribution. Safety Measures
Ensure the storage system meets safety standards to prevent leaks, ruptures, or explosions. This involves using certified materials, incorporating pressure relief devices, and designing structural reinforcements to withstand potential accidents. Safety should always be a top priority in hydrogen storage design. Hydrogen Purity
Consider the required hydrogen purity for your specific application. Depending on the end-use, such as fuel cells, certain contaminants like moisture or impurities can be detrimental. Incorporate purification systems if needed, which may increase the overall system cost. Refueling Considerations
Design the storage system to facilitate efficient refueling processes. Consider aspects such as refueling time, connection mechanisms, and compatibility with refueling infrastructure. Faster and more accessible refueling can enhance the usability and practicality of hydrogen storage systems. Cost Optimization
Minimize costs by considering factors such as material selection, manufacturing processes, and economies of scale. Explore different manufacturing techniques, such as filament winding or automated fiber placement, to optimize production costs. Additionally, identifying cost-effective suppliers and exploring potential cost-saving innovations can help reduce overall expenses. System Integration
Ensure seamless integration of the hydrogen storage system with the overall application or infrastructure. Consider factors like system weight, space requirements, and compatibility with other components or systems. Testing and Certification
Perform rigorous testing to validate the design, ensure safety, and obtain necessary certifications. Test the storage system under various conditions, such as temperature, pressure, and vibration, to evaluate its performance and reliability. Compliance with relevant safety standards and certifications is essential. Lifecycle Considerations
Consider the environmental impact and overall lifecycle cost of the storage system. Evaluate factors such as recyclability, energy consumption during manufacturing, and end-of-life disposal options to ensure a sustainable and cost-effective solution. Optimizing a compact pressurized hydrogen storage system with limited cost requires a holistic approach, considering technical, safety, economic, and environmental aspects. It is crucial to balance these factors to achieve an efficient and affordable storage solution