Farhan Primatondi Harahap

From ccitonlinewiki
Revision as of 11:29, 2 June 2023 by Primaxfarhan (talk | contribs) (Case Study : Design & Optimization Pressurized Hydrogen Storage)
Jump to: navigation, search

Saya Tondi, merupakan mahasiswa kelas Metode Numerik 04,Teknik Perkapalan UI 2021


Resume Pertemuan 1 - 26/05/2023

Numerical Methods Mahasiswa diharapkan daat berinteraksi dengan dosen lebih lanjut dalam perkuliahan Mata Kuliah Metode Numerik. Mahasiswa dapat mempelajari metode numerik di Google, sehingga mahasiswa dapat belajar mandiri dan merupakan progress dalam pembelajaran tidak hanya belajar dalam kelas, karena jika hanya di kelas tidak cukup untuk menjawa ujian, karena ujiannya menggunakan metode dia yang membuat soal dia yang menjawab, ini merupakan teknologi yang maju, konten Metode Numerik.

Case study, mengkonversi energi, memecah air, bisa dituliskan menggunakan karya tulis ilmiah ini juga merupakan PKM (Program Kreatifitas Mahasiswa). ChatGPT juga merupakan hasil dari metode numerik. Dapat mendesain 1 liter tabung hidrogen untuk dicampurkan bahan bakar motor. consciousness juga merupakan bahasan yang dibahas pada pertemuan pertama seperti pertanyaan soal (x+1)(x-1)/(x-1) = 2 yang menimbulkan beberapa jawaban oleh karena itu kita harus menggunakan otak kita secara sadar untuk menemukan solusi dari soal tersebut.


Case Study : Design & Optimization Pressurized Hydrogen Storage

A pressurized hydrogen storage is a specially designed container for storing hydrogen under high pressure. The storage is designed to withstand higher pressure than the surrounding atmospheric pressure. The main purpose of a pressurized hydrogen storage is to safely and efficiently store and transport hydrogen. Pressurized hydrogen storage are commonly used in applications such as hydrogen storage and transportation for industrial, transportation, and energy storage purposes. The storage are equipped with filling and discharge valves to safely control the flow of hydrogen in and out of the storage. Safety is a crucial factor in the design and use of pressurized hydrogen storage. These storage must meet safety standards and undergo extensive testing to ensure structural reliability and resistance to high pressure.

Hydrogen Storage Spesification : It can accommodate 1 liter of hydrogen, And the pressure inside the storage is 8 bars. And the maximum cost for manufacturing the hydrogen storage is Rp500.000.

How to make a perfect Hydrogen Storage?

To design of pressurized hydrogen storage involves several steps, including Design and Engineering, Material selection, Fabrication, Safety. These are the steps to obtain a Pressurized Hydrogen Storage :

Design and Engineering: Developing the design specifications and engineering calculations for the hydrogen cylinder, considering factors such as capacity, pressure requirements, material selection, and safety considerations. Factors such as shape, volume, and thickness of the tank walls. Cylindrical shape are often used for pressurized gas storage. lets assume to design 1 liter capacity of pressurized hydrogen storage we need to have 300mm height with radius around of 50mm of cylindrical storage

Material Selection: The choice of material for the storage vessel is critical to ensure safety, weight, and cost considerations. Sourcing and procuring the appropriate materials for the hydrogen cylinder, such as high-strength alloys, carbon fiber composites, or other suitable materials. Material selection is also in accordance with the existing budget.

Manufacturing Techniques: Utilizing manufacturing techniques like filament winding, bladder molding, or other suitable methods to create the desired shape and structure of the hydrogen cylinder. Performing machining operations, such as drilling or threading, and applying finishing treatments, such as cleaning, polishing, or coating, to achieve the desired final specifications.

Safety systems: Integrate safety features such as pressure relief valves, burst discs, or automatic shut-off systems to prevent overpressure or other emergency events. Adding a cover or outer shield to protect the tank from physical damage and external environment that might affect the performance of the tank.

Installation & Operational : Install the storage tank in the intended location, ensuring proper connections and integration with other systems if applicable. Develop guidelines for the safe operation, maintenance, and inspection of the storage tank to ensure its continued performance and integrity.

Finally, for the manufacture of pressurized hydrogen storage, of course you have to think about the initial cost, which is no more than Rp500.000 . Therefore, we must minimize costs on several factors, such as material selection or manufacturing, but sometimes this will cause expensive maintenance costs and security. reduce. so we have to think consciously in this case.

Resume Pertemuan 2