Dimas Ali Raihan
Perkenalkan saya Dimas Ali Raihan, biasa dipanggil Dimas, Asal dari kota bekasi dan lahir pada tgl 10 Desember 2003, saya adalah mahasiswa Teknik Perkapalan Fakultas Teknik Universitas Indonesia
Resume Pertemuan 26/5/2023
Pada pertemuan pertama dengan Bapak Ahmad Indra Siswantara (DAI), kami menjelaskan kepada Anda minat Anda terhadap mata kuliah Metode Numerik. Dan Pak Dai menekankan bahwa kita harus berusaha semaksimal mungkin, daripada curang dan tidak tahu arah materi. Penggunaan chatGPT harus digunakan secara ekstrim, karena bisa digunakan untuk mencari data tertentu. Dalam kertas ujian bersama Pak Dai, kertas ujian kosong yang meminta siswa memahami materi yang diujikan, Pak Dai menceritakan pengalamannya mengajar mekanika fluida. Kemudian Pak DAI menugaskan beberapa orang untuk menginterpretasikan kembali penjelasan metode numerik dan materi yang sudah disampaikan oleh kelompok WA. Kemudian kami ditugaskan merancang alat penyimpan hidrogen tubular dan menerapkan metode numerik.
Untuk mengoptimalkan desain, volume silinder 1 liter, dan tekanan 8, Batas harga desain tidak lebih dari 500.000. Mencampur oli di sepeda motor meningkatkan efisiensi. Pilih bahan, lebar, dan tinggi sendiri
Yang terpenting dari Pak DAI adalah realita, kalau kita tidak merasakan dampaknya, pasti kita akan lupa. Kemudian Pak Dai menjelaskan chatGPT, kita harus bisa mengajukan pertanyaan terbaik ke sistem AI tersebut
Kemudian dilanjutkan dengan pembahasan tentang dasar pemikiran dan keyakinan yang kita anut, menjelaskan tentang qbit atau qubit, lalu kita ditanya tentang pembagian dan pengurangan dan diminta menjelaskan mengapa kita memilih jawaban tersebut, berdasarkan apa dan mengapa?
Design & Optimization of Pressurized Hydrogen Storage
To design and optimize a pressurized hydrogen storage system with a capacity of 1 liter and a pressure level of 8 bar while keeping the cost below Rp. 500,000, several factors need to be considered. Here's a proposed solution:
1. Storage Tank Selection: Material: Choose a lightweight and cost-effective material such as aluminum or composite materials. Design: Opt for a cylindrical shape, as it provides high strength-to-weight ratio and efficient space utilization. Size: Select a tank with a capacity of 1 liter and suitable dimensions to fit within the cost constraints.
2. Tank Safety: Ensure the storage tank meets safety standards and is certified for hydrogen storage. Include safety features such as pressure relief valves and burst discs to prevent over-pressurization. Implement measures to minimize the risk of leakage, such as proper sealing and regular inspections.
3. Pressure Regulation: Install a pressure regulator to maintain a constant pressure of 8 bar in the storage tank. Consider using a pressure sensor to monitor the pressure level and trigger the regulator when necessary. Optimize the pressure regulation system for efficiency and cost-effectiveness.
4. Cost Optimization: Use cost-effective materials and manufacturing processes for the storage tank. Optimize the tank design to minimize material usage while ensuring structural integrity. Consider mass production techniques to reduce per-unit costs. Source components and materials from reliable suppliers offering competitive prices. Explore local manufacturing options to minimize transportation costs.
5. Integration: Determine the appropriate fittings and connectors required for the storage system. Ensure compatibility with other components or systems, such as fuel cell systems or hydrogen refueling stations.
6. Testing and Certification: Conduct thorough testing to verify the safety and performance of the storage system. Obtain necessary certifications and compliance with relevant standards and regulations.
7. Cost Analysis: Keep track of the costs associated with the materials, manufacturing, assembly, and testing of the storage system. Optimize the design and manufacturing process iteratively to minimize costs while meeting specifications.
It is important to note that specific design details and cost estimates may vary depending on various factors, including geographical location, availability of materials, manufacturing capabilities, and design complexity. Consulting with experts in hydrogen storage systems and considering real-world constraints will provide more accurate and detailed solutions.
Konsep tabung hidrogen
Desain yang dibutuhkan
- volume 1 liter
- tekanan sebesar 8 bar
- maksimal budget 500.000 rupiah
- Normal operating condition (room temperature and humidity)
material yang digunakan adalah material jenis Stainless steel 201. properti material :
Tipe 201 merupakan bagian dari stainless steel grade 316.
Yield strenght : 205 mpa
ultimate tensile : 515 mpa
untuk mencari ukuran panjang, lebar dan tinggi tabung, menggunakan codingan sebagai berikut
import numpy as np
from scipy.optimize import minimize def hitungLuasPermukaan(x): radius, tinggi = x return 2 * np.pi * radius * tinggi + 2 * np.pi * radius**2 def batasanVolume(x, volume_target): radius, tinggi = x return np.pi * radius**2 * tinggi - volume_target # Set variabel konstan volume_target = 1000 # Volume konstan (dalam sentimeter kubik) # Definisikan masalah optimisasi def masalahOptimisasi(x): return hitungLuasPermukaan(x), batasanVolume(x, volume_target) # Tetapkan tebakan awal untuk variabel optimisasi tebakan_awal = [1.0, 1.0] # Definisikan masalah optimisasi batasan = [{'type': 'eq', 'fun': lambda x: masalahOptimisasi(x)[1]}] batas = [(0, None), (0, None)] hasil = minimize(lambda x: masalahOptimisasi(x)[0], tebakan_awal, method='SLSQP', bounds=batas, constraints=batasan) # Ekstrak variabel hasil yang dioptimalkan radius_optimal, tinggi_optimal = hasil.x # Hitung luas permukaan yang dioptimalkan luas_permukaan_optimal = hitungLuasPermukaan([radius_optimal, tinggi_optimal]) # Tampilkan hasil print('Jari-jari Optimal:', radius_optimal, 'cm') print('Tinggi Optimal:', tinggi_optimal, 'cm') print('Luas Permukaan Optimal:', luas_permukaan_optimal, 'cm^2')
while t < 11.05e-3:
hoop = (p * r)/(t) print('Untuk ketebalan', t, 'hoop stress =', hoop, "Pa") t += 1e-3 if hoop > 205e9: #Yield Strength of AISI 316 break
Jari-jari : 5.419262767614773 cm Tinggi : 10.83851313481415 cm Luas Permukaan : 553.5810444881138 cm^2