Muhammad Faridz Athaya

From ccitonlinewiki
Revision as of 21:47, 14 January 2021 by Muhammad Faridz Athaya (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Foto Profil Faridz.jpeg

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُ

Biodata

Nama  : Muhammad Faridz Athaya

NPM  : 1806149160

TTL  : Jakarta, 12 Oktober 1999

Tempat Tinggal: Jatisampurna

Faridz merupakan mahasiswa semester 5 jurusan teknik mesin di Universitas Indonesia. Selama dua tahun di Universitas Indonesia, Faridz cukup aktif dalam berorganisasi di lingkup Fakultas Teknik. Dimana Faridz memiliki pengalaman organisasi di IMM FTUI dan BEM FTUI di tahun pertama, dan diamanahkan sebagai Ketua IMM FTUI di tahun ini hingga bulan desember nanti. Sebagai seorang mahasiswa, Faridz mempunyai mimpi untuk dapat menginspirasi banyak orang dan membawa kebaikan bagi lingkungannya. Oleh karena itu, Faridz selalu berusaha aktif dan memberikan manfaat lewat organisasi dan belajar dengan tekun agar ilmu yang dipelajari akan bermanfaat bagi agama, bangsa, dan negara di kemudian hari. Insha Allah dengan niat yang tulus dan semangat menebar kebaikan, apa yang diimpikan oleh Faridz akan tercapai

Sebelum UTS

Sebelum UTS kami diajarkan oleh Pak Dr. Ir. Engkos A. Kosasih, M. T., dimana materi yang diajarkan adalah

  • Deret Mclaurin & Deret Taylor, dengan metode forward, center, dan backward
  • Bracketing Methods dan Open Methods, dimana bracketing methods meliputi graphical methods, bisection methods, dan false-position methods sedangkan open methods meliputi simple fixed-point iteration, newton-raphson methods, secant methods, dan brents methods
  • Mencari nilai interpolasi dan regresi linier menggunakan matriks

Minggu 1 (11 November 2020)

Pada pertemuan pertama, Pak Dr. Ir. Ahmad Indra Siswantara memperkenalkan kami dengan situs wiki air dan kami diarahkan juga untuk membuat page kami sendiri di situs tersebut. Dimana nantinya kami harus mengupdate dan mereview setiap pertemuan dengan Pak Dr. Ir. Ahmad Indra Siswantara, beliau juga memberi tahu kepada kami tujuan mempelajari Metode Numerik, yaitu untuk memahami konsep dan prinsip dasar metode numerik, mengerti bagaimana mengaplikasikannya, dan mampu menerapkannya pada persoalan yang berbau keteknikan

Setelah melaksanakan kelas metode numerik pada minggu pertama, kami diberikan tugas untuk membuat video tutorial mengenai pemakaian aplikasi OpenModelica pada suatu pekerjaan. Dimana saya akhirnya memilih untuk mengangkat video tutorial membuat Feedback Control System Sederhana dengan aplikasi OpenModelica sebagai tugas saya. Dalam membuat Feedback Control System Sederhana, saya menggunakan Step sebagai Sourcenya, Feedback, PID dan Second Order yang parameternya bisa dilihat pada gambar di bawah ini

Screenshot (716).png Screenshot (717).png Screenshot (718).png

Untuk penjelasan lebih lengkap, dapat dilihat video tutorial saya dalam membuat Feedback Control System Sederhana pada

Minggu 2 (18 November 2020)

Dalam lebih mendalami materi yang sudah disampaikan di minggu kedua, saya menguji matriks 5x5 yang saya buat sendiri dan saya coba menyelesaikannya dengan OpenModelica, berikut matriks yang akan saya uji

Screenshot (769).png

Disini saya menggunakan metode Gauss Elimination. OpenModelica memiliki function yang sudah tersedia untuk menyelesaikan matriks X*a = Y, dimana X merupakan matriks 5 x 5 pada ruas kiri persamaan, Y merupakan hasil dari persamaan yang berada pada ruas kanan persamaan, dan a merupakan nilai yang ingin dicari. Function yang tersedia ini bernama solve dan kita dapat menggunakannya dengan mengetik Modelica.Math.Matrices.solve pada algoritma. Untuk memudahkan eksekusi pada class, saya membuat function terlebih dahulu dengan X dan Y sebagai input serta a sebagai output.

Screenshot (766).png

Berikut merupakan class yang saya buat untuk mempermudah menyelesaikan permasalahan yang saya uji

Screenshot (767).png

Setelah itu, saya mulai simulasikan fungsi yang sudah saya buat dengan memanggil class ke fungsi yang saya buat, sehingga didapatkan jawaban dengan membentuk grafik sebagai berikut

Screenshot (765).png

Dari grafik di atas, maka didapatkan nilai a masing-masing adalah:

  • a1 = -70.358
  • a2 = 53.333
  • a3 = -22.368
  • a4 = -9.9111
  • a5 = 37.0032

Untuk lebih lengkapnya, dapat ditonton melalui video tutorial yang saya buat dan upload di youtube

Minggu 3 (25 November 2020)

Tugas 1 (Example 3.1)

Example 3.1 RS.jpg

Persamaan

model Trusses

parameter Integer N=10; //Global matrice = 2*points connected
parameter Real A=8;
parameter Real E=1.9e6;
Real G[N,N]; //global
Real Ginitial[N,N]; //global
Real Sol[N]; //global dispplacement
Real X[N]={0,0,0,0,0,0,0,-500,0,-500};
Real R[N]; //global reaction force
Real SolMat[N,1];
Real XMat[N,1];

//boundary coundition
Integer b1=1;
Integer b2=3;

//truss 1
parameter Real X1=0; //degree between truss
Real k1=A*E/36;
Real K1[4,4]; //stiffness matrice
Integer p1a=1;
Integer p1b=2;
Real G1[N,N];

//truss 2
parameter Real X2=135; //degree between truss
Real k2=A*E/50.912;
Real K2[4,4]; //stiffness matrice
Integer p2a=2;
Integer p2b=3;
Real G2[N,N];

//truss 3
parameter Real X3=0; //degree between truss
Real k3=A*E/36;
Real K3[4,4]; //stiffness matrice
Integer p3a=3;
Integer p3b=4;
Real G3[N,N];

//truss 4
parameter Real X4=90; //degree between truss
Real k4=A*E/36;
Real K4[4,4]; //stiffness matrice
Integer p4a=2;
Integer p4b=4;
Real G4[N,N];

//truss 5
parameter Real X5=45; //degree between truss
Real k5=A*E/50.912;
Real K5[4,4]; //stiffness matrice
Integer p5a=2;
Integer p5b=5;
Real G5[N,N];

//truss 6
parameter Real X6=0; //degree between truss
Real k6=A*E/36;
Real K6[4,4]; //stiffness matrice
Integer p6a=4;
Integer p6b=5;
Real G6[N,N];

/*
for each truss, please ensure pXa is lower then pXb (X represents truss element number)
*/

algorithm

//creating global matrice
K1:=Stiffness_Matrices(X1);
G1:=k1*Local_Global(K1,N,p1a,p1b);

K2:=Stiffness_Matrices(X2);
G2:=k2*Local_Global(K2,N,p2a,p2b);

K3:=Stiffness_Matrices(X3);
G3:=k3*Local_Global(K3,N,p3a,p3b);

K4:=Stiffness_Matrices(X4);
G4:=k4*Local_Global(K4,N,p4a,p4b);

K5:=Stiffness_Matrices(X5);
G5:=k5*Local_Global(K5,N,p5a,p5b);

K6:=Stiffness_Matrices(X6);
G6:=k6*Local_Global(K6,N,p6a,p6b);

G:=G1+G2+G3+G4+G5+G6;
Ginitial:=G;

//implementing boundary condition
for i in 1:N loop
 G[2*b1-1,i]:=0;
 G[2*b1,i]:=0;
 G[2*b2-1,i]:=0;
 G[2*b2,i]:=0;
end for;

G[2*b1-1,2*b1-1]:=1;
G[2*b1,2*b1]:=1;
G[2*b2-1,2*b2-1]:=1;
G[2*b2,2*b2]:=1;

//solving displacement
Sol:=Gauss_Jordan(N,G,X);

//solving reaction force
SolMat:=matrix(Sol);
XMat:=matrix(X);
R:=Reaction_Trusses(N,Ginitial,SolMat,XMat);

end Trusses;
Grafik Displacement
Grafik Reaction Forces

Homework

Soal Trusses 2 RS.jpg

Persamaan

class Trusses_HW

parameter Integer N=8; //Global matrice = 2*points connected
parameter Real A=0.001; //Area m2
parameter Real E=200e9; //Pa
Real G[N,N]; //global
Real Ginitial[N,N]; //global
Real Sol[N]; //global dispplacement
Real X[N]={0,0,-1035.2762,-3863.7033,0,0,-1035.2762,-3863.7033};
Real R[N]; //global reaction force
Real SolMat[N,1];
Real XMat[N,1];

//boundary condition
Integer b1=1;
Integer b2=3;

//truss 1
parameter Real X1=0; //degree between truss
Real k1=A*E/1;
Real K1[4,4]; //stiffness matrice
Integer p1a=1;
Integer p1b=2;
Real G1[N,N];

//truss 2
parameter Real X2=0; //degree between truss
Real k2=A*E/1;
Real K2[4,4]; //stiffness matrice
Integer p2a=2;
Integer p2b=3;
Real G2[N,N];

//truss 3
parameter Real X3=90; //degree between truss
Real k3=A*E/1.25;
Real K3[4,4]; //stiffness matrice
Integer p3a=2;
Integer p3b=4;
Real G3[N,N];

//truss 4
parameter Real X4=90+38.6598; //degree between truss
Real k4=A*E/1.6;
Real K4[4,4]; //stiffness matrice
Integer p4a=1;
Integer p4b=4;
Real G4[N,N];

//truss 5
parameter Real X5=90-38.6598; //degree between truss
Real k5=A*E/1.6;
Real K5[4,4]; //stiffness matrice
Integer p5a=3;
Integer p5b=4;
Real G5[N,N];

/*
for each truss, please ensure pXa is lower then pXb (X represents truss element number)
*/

algorithm

//creating global matrice
K1:=Stiffness_Matrices(X1);
G1:=k1*Local_Global(K1,N,p1a,p1b);

K2:=Stiffness_Matrices(X2);
G2:=k2*Local_Global(K2,N,p2a,p2b);

K3:=Stiffness_Matrices(X3);
G3:=k3*Local_Global(K3,N,p3a,p3b);

K4:=Stiffness_Matrices(X4);
G4:=k4*Local_Global(K4,N,p4a,p4b);

K5:=Stiffness_Matrices(X5);
G5:=k5*Local_Global(K5,N,p5a,p5b);

G:=G1+G2+G3+G4+G5;
Ginitial:=G;

//implementing boundary condition
for i in 1:N loop
 G[2*b1-1,i]:=0;
 G[2*b1,i]:=0;
 G[2*b2-1,i]:=0;
 G[2*b2,i]:=0;
end for;

G[2*b1-1,2*b1-1]:=1;
G[2*b1,2*b1]:=1;
G[2*b2-1,2*b2-1]:=1;
G[2*b2,2*b2]:=1;

//solving displacement
Sol:=Gauss_Jordan(N,G,X);

//solving reaction force
SolMat:=matrix(Sol);
XMat:=matrix(X);
R:=Reaction_Trusses(N,Ginitial,SolMat,XMat);

end Trusses_HW;

Fungsi Panggil

Matrice Transformation

function Stiffness_Matrices
input Real A;
Real Y;
output Real X[4,4];
Real float_error = 10e-10;

final constant Real pi=2*Modelica.Math.asin(1.0);

algorithm

Y:=A/180*pi;
    
X:=[(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y);

Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2;

-(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y);

-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2];

for i in 1:4 loop
 for j in 1:4 loop
   if abs(X[i,j]) <= float_error then
     X[i,j] := 0;
   end if;
 end for;
end for;

end Stiffness_Matrices;

Global Element Matrice

function Local_Global
input Real Y[4,4];
input Integer B;
input Integer p1;
input Integer p2;
output Real G[B,B];

algorithm

for i in 1:B loop
 for j in 1:B loop
     G[i,j]:=0;
 end for;
end for;

G[2*p1,2*p1]:=Y[2,2];
G[2*p1-1,2*p1-1]:=Y[1,1];
G[2*p1,2*p1-1]:=Y[2,1];
G[2*p1-1,2*p1]:=Y[1,2];

G[2*p2,2*p2]:=Y[4,4];
G[2*p2-1,2*p2-1]:=Y[3,3];
G[2*p2,2*p2-1]:=Y[4,3];
G[2*p2-1,2*p2]:=Y[3,4];

G[2*p2,2*p1]:=Y[4,2];
G[2*p2-1,2*p1-1]:=Y[3,1];
G[2*p2,2*p1-1]:=Y[4,1];
G[2*p2-1,2*p1]:=Y[3,2];

G[2*p1,2*p2]:=Y[2,4];
G[2*p1-1,2*p2-1]:=Y[1,3];
G[2*p1,2*p2-1]:=Y[2,3];
G[2*p1-1,2*p2]:=Y[1,4];

end Local_Global;

Reaction Matrice Equation

function Reaction_Trusses
input Integer N;
input Real A[N,N];
input Real B[N,1];
input Real C[N,1];
Real X[N,1];
output Real Sol[N];
Real float_error = 10e-10;

algorithm
X:=A*B-C;

for i in 1:N loop
 if abs(X[i,1]) <= float_error then
   X[i,1] := 0;
 end if;
end for;

for i in 1:N loop
 Sol[i]:=X[i,1];
end for;

end Reaction_Trusses;
Grafik Displacement
Grafik Reaction Forces

Minggu 4 (2 Desember 2020)

Kuis:

Membuat Flowchart untuk penyelesaian soal nomor 4

588145.jpg
588146.jpg

Tugas Minggu 4


Prno8.png

Dalam mengerjakan soal tersebut, saya pertama membuat flow chart dan class diagramnya terlebih dahulu

596507.jpg

Kemudian, saya membuat FBD terlebih dahulu untuk mencari data-data yang diperlukan, yaitu node, sudut, luas, modulus elastisitas, dan panjang dari tiap batang yang nantinya akan menjadi data yang mempermudah saya dalam menyelesaikan permasalahannya lewat OpenModelica

596508.jpg

Nilai k dapat didapatkan dengan rumus k=AE/L. Setelah mendapat nilai k setiap batang, nilai tersebut akan digunakan untuk membuat matriks K elemental (Ke) setiap batang.

Screenshot (818).png

Kemudian matriks 6x6 tersebut akan dibuat menjadi matriks 12x12 sesuai dengan jumlah batang (3) * jumlah node (4). Ini disebut matriks kekakuan global (Kg).

Screenshot (819).png

Kemudian untuk mendapatkan matriks kekakuan global total (KgTot), saya menjumlahkan matriks kekakuan global setiap batang

Screenshot (820).png

Pada soal ini, node 2,3, dan 4 merupakan pinned. Sehingga diberikan boundary pada matriks kekakuan global sebagai berikut U2X=U2Y=U2Z=U3X=U3Y=U3Z=U4X=U4Y=U4Z=0.

Screenshot (821).png

Untuk mencari displacement-nya digunakan gauss jordan untuk menyelesaikan matriks dengan F sebagai external load

Screenshot (822).png

Sedangkan untuk mencari reaction menggunakan persamaan R=Kg*U - F.

Screenshot (823).png

Setelah semua function telah dibuat, maka dibuat class

Screenshot (824).png

Setelah disimulasikan dihasilkan nilai Displacement (U) dan nilai R

Screenshot (825).png
Screenshot (826).png

Selengkapnya dapat dilihat dalam video berikut

Minggu 5

Pada pertemuan kelas pengganti, kami mereview ulang hal apa saja yang sudah kami terima dan serap selama perkuliahan Metode Numerik. Di kelas ini kami juga kembali mereview dan diajarkan tentang sistem trusses menggunakan OpenModelica dengan metode sharing dengan teman-teman yang mengerti.

Minggu 6 (16 Desember 2020)

Pada pertemuan minggu ke-6, kami diajarkan mengenai optimasi dengan menggunakan aplikasi OpenModelica. Optimasi merupakan cara untuk mendapatkan nilai minimum atau maksimum dari suatu permasalahan. Terdapat beberapa aspek yang diperhatikan dalam melakukan optimasi yaitu fungsi objektif dan ada juga konstrain. Pada kali ini Asisten Dosen yaitu Bu Chandra memberikan tutorial untuk melakukan optimasi menggunakan metode Bracket. Pada metode "Bracket Optimization Using Golden Ratio" terdapat satu graik yang mempunyai nilai f(x) global maks dan lokal maks serta terdapat f(x) global minimum dann lokal minimum. Pada pertemuan kali ini, Bu chandra mengajarkan sampai melakukan optimasi grafik tanpa sebuah konstrain.

Berikutnya kami diberikan contoh penggunaan optimasi pada OpenModelica sebagai berikut

Fungsi panggil

function f_obj3
import Modelica.Math;
input Real x;
output Real y;
algorithm
y:= 2*Math.sin(x)-x^2/10;
end f_obj3;

setelah itu kita dapat membuat model optimasi sistem bracket sesuai yang diajarkan

model bracket_optimation3
parameter Integer n=8;
Real x1[n];
Real x2[n];
Real xup;
Real xlow;
Real d;
Real f1[n];
Real f2[n];
Real xopt;
Real yopt;
algorithm
xup :=4;
xlow:=0;
for i in (1:n) loop
  d:= (5^(1/2)-1)/2*(xup-xlow);
  x1[i]:= xlow+d;
  x2[i]:= xup-d;
  f1[i]:= f_obj3(x1[i]);
  f2[i]:= f_obj3(x2[i]);
  if f1[i]>f2[i] then
  xup:= xup;
  xlow:= x2[i];
  xopt:= xup;
  yopt:= f1[i];
  else
  xlow:= xlow;
  xup:= x1[i];
  xopt:= xup;
  end if;
  end for;
end bracket_optimation3;

Tugas Besar: Aplikasi Numerik dalam Optimasi Design Struktur Rangka Sederhana

600px-Soaltubes.jpeg Soaltubes2.jpeg

Pada tugas besar kali ini kita akan mendesign suatu rangka dengan cost yang yang serendah mungkin tetapi dengan kualitas yang optimum. Terdapat beberapa variabel yang diperhatikan diantaranya :

  • 1. Harga material
  • 2. Jenis material
  • 3. Luas Cross Section
  • 4. Penampang yang digunakan

Setelah itu kita akan melakukan optimasi dan membentuk kurva efisiensi harga dengan curve fitting menggunakan Metode numerik.

Flowchart Pengerjaan Tugas Besar

Floww chart tubes.png

1. Mendefinisikan Masalah

Captureaaaaaaaaaaaa.PNG

2. Menentukan Asumsi Kondisi

Asumsi:

  • Diasumsikan tidak ada bending karena bersifat truss
  • Beban terdistribusi pada node
  • Safety Factor = 2
  • Batas displacement 0,001m sebelum terjadi buckling
  • Variabel bebas

Constraint

  • Node 1,2,3,4 (lantai dasar) fixed
  • Beban F1 dan F2 terdistribusi ke node sekitaranya, sehingga:

1.) Node 13 & 16 = 1000N 2.) Node 14 & 15 = 500N

3. Mengasumsikan Solusi Pada Masalah

Untuk mencapai tujuan hal dapat dilakukan:

1. Mencari area paling optimum dengan membandingkan dimensi siku untuk menentukan dimensi siku paling optimum (Elastisitas menjadi variabel tetap, Area menjadi variabel bebas)

2. Mencari material paling optimum dengan membandingkan performance material pada area yang sama (Area menjadi variabel tetap, Elastisitas menjadi variabel bebas)

4. Research Data Profil Besi Siku

1. Elasticity Tetap Dengan Material Besi Siku SS316

Captureasdafsaf.PNG

2. Area Tetap

Sadada.PNG

5. Membuat Model Numerik

Menghitung Stress, Displacement, Reaction

model Tugas_Besar_Faridz //define initial variable parameter Integer Points=size(P,1); //Number of Points parameter Integer Trusses=size(C,1); //Number of Trusses parameter Real Yield= 290.0e+6; //Yield Strength Material(Pa) parameter Real Area= 171.0e-6;//Luas Siku (Dimension=30x30x3mm) parameter Real Elas= 193.0+9; //Elasticity Material (Pa) //define connection parameter Integer C[:,2]=[ 1,5; //(1)

                         2,6;  // (2)
                         3,7;  // (3)
                         4,8;  // (4)
                         5,6;  // (5)
                         6,7;  // (6)
                         7,8;  // (7)
                         5,8;  // (8)
                         5,9;  // (9)
                         6,10; // (10)
                         7,11; // (11)
                         8,12; // (12)
                         9,10; // (13)
                         10,11;// (14)
                         11,12;// (15)
                         9,12; // (16)
                         9,13; // (17)
                         10,14;// (18)
                         11,15;// (19)
                         12,16;// (20)
                         13,14;// (21)
                         14,15;// (22)
                         15,16;// (23)
                         13,16];//(24)

//define coordinates (please put orderly) parameter Real P[:,6]=[ 0 ,0 ,0,1,1,1; //node 1

                          0.75,0  ,0,1,1,1;    //node 2
                          0.75,0.6,0,1,1,1;     //node 3
                          0   ,0.6,0,1,1,1;      //node 4
                          
                          0   ,0  ,0.3,0,0,0;   //node 5
                          0.75,0  ,0.3,0,0,0;  //node 6
                          0.75,0.6,0.3,0,0,0;   //node 7
                          0   ,0.6,0.3,0,0,0;    //node 8
                          
                          0   ,0  ,1.05,0,0,0;   //node 9
                          0.75,0  ,1.05,0,0,0;  //node 10  
                          0.75,0.6,1.05,0,0,0;   //node 11
                          0   ,0.6,1.05,0,0,0;    //node 12
                          
                          0   ,0  ,1.8,0,0,0;   //node 13
                          0.75,0  ,1.8,0,0,0;  //node 14
                          0.75,0.6,1.8,0,0,0;   //node 15
                          0   ,0.6,1.8,0,0,0];   //node 16
                          

//define external force (please put orderly) parameter Real F[Points*3]={0,0,0,

                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,0, 
                          0,0,-1000, 
                          0,0,-500, 
                          0,0,-500, 
                          0,0,-1000}; 

//solution Real displacement[N], reaction[N]; Real check[3]; Real stress1[Trusses]; Real safety[Trusses]; Real dis[3]; Real Str[3]; protected

parameter Integer N=3*Points;
Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), cx, cy, cz, L, X[3,3];
Real err=10e-15, ers=10e-8;

algorithm //Creating Global Matrix G:=id; for i in 1:Trusses loop

for j in 1:3 loop
 q1[j]:=P[C[i,1],j];
 q2[j]:=P[C[i,2],j];
end for;       
  //Solving Matrix
  L:=Modelica.Math.Vectors.length(q2-q1);
  cx:=(q2[1]-q1[1])/L;
  cy:=(q2[2]-q1[2])/L;
  cz:=(q2[3]-q1[3])/L; 
  X:=(Area*Elas/L)*[cx^2,cx*cy,cx*cz;
                    cy*cx,cy^2,cy*cz;
                    cz*cx,cz*cy,cz^2];
   //Transforming to global matrix
  g:=zeros(N,N); 
  for m,n in 1:3 loop
    g[3*(C[i,1]-1)+m,3*(C[i,1]-1)+n]:=X[m,n];
    g[3*(C[i,2]-1)+m,3*(C[i,2]-1)+n]:=X[m,n];
    g[3*(C[i,2]-1)+m,3*(C[i,1]-1)+n]:=-X[m,n];
    g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n];
  end for;   
G_star:=G+g;
G:=G_star;

end for; //Implementing boundary for x in 1:Points loop

if P[x,4] <> 0 then
  for a in 1:Points*3 loop
    G[(x*3)-2,a]:=0;
    G[(x*3)-2,(x*3)-2]:=1;
  end for;
end if;
if P[x,5] <> 0 then
  for a in 1:Points*3 loop
    G[(x*3)-1,a]:=0;
    G[(x*3)-1,(x*3)-1]:=1;
  end for;
end if;
if P[x,6] <> 0 then
  for a in 1:Points*3 loop
    G[x*3,a]:=0;
    G[x*3,x*3]:=1;
  end for;
end if;

end for; //Solving displacement displacement:=Modelica.Math.Matrices.solve(G,F); //Solving reaction reaction:=(G_star*displacement)-F; //Eliminating float error for i in 1:N loop

reaction[i]:=if abs(reaction[i])<=err then 0 else reaction[i];
displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i];

end for; //Checking Force check[1]:=sum({reaction[i] for i in (1:3:(N-2))})+sum({F[i] for i in (1:3:(N-2))}); check[2]:=sum({reaction[i] for i in (2:3:(N-1))})+sum({F[i] for i in (2:3:(N-1))}); check[3]:=sum({reaction[i] for i in (3:3:N)})+sum({F[i] for i in (3:3:N)}); for i in 1:3 loop

check[i] := if abs(check[i])<=ers then 0 else check[i];

end for; //Calculating stress in each truss for i in 1:Trusses loop for j in 1:3 loop

 q1[j]:=P[C[i,1],j];
 q2[j]:=P[C[i,2],j];
 dis[j]:=abs(displacement[3*(C[i,1]-1)+j]-displacement[3*(C[i,2]-1)+j]);

end for;

  //Solving Matrix
  L:=Modelica.Math.Vectors.length(q2-q1);
  cx:=(q2[1]-q1[1])/L;
  cy:=(q2[2]-q1[2])/L;
  cz:=(q2[3]-q1[3])/L; 
  X:=(Elas/L)*[cx^2,cx*cy,cx*cz;
               cy*cx,cy^2,cy*cz;
               cz*cx,cz*cy,cz^2];    
  Str:=(X*dis);
  stress1[i]:=Modelica.Math.Vectors.length(Str);

end for; //Safety factor for i in 1:Trusses loop

if stress1[i]>0 then
  safety[i]:=Yield/stress1[i];
else
  safety[i]:=0;
end if; 

end for; end Tugas_Besar_Faridz;

Model Curve Fitting

model callcurve

parameter Real [12] X={564.0e-6,231.0e-6,864.0e-6,684.0e-6,475.0e-6,304.0e-6,171.0e-6,1.2e-3,1.7e-3,111.0e-6,141.0e-6,744.0e-6};
parameter Real [12] Y={1343500,564000,2064500,1506500,1115500,725000,414000,2919000,4048000,305000,347500,1598500};
Real [3] Coe;

algorithm

Coe:=Curve_Fitting(X,Y);

end callcurve;

Function

function Curve_Fitting

 input Real X[:];
 input Real Y[size(X,1)];
 input Integer order=2;
 output Real Coe[order+1];

protected

 Real Z[size(X,1),order+1];
 Real ZTr[order+1,size(X,1)];
 Real A[order+1,order+1];
 Real B[order+1];

algorithm

for i in 1:size(X,1) loop
 for j in 1:(order+1) loop
 Z[i,j]:=X[i]^(order+1-j);
 end for;
end for;

ZTr:=transpose(Z); A:=ZTr*Z; B:=ZTr*Y; Coe:=Modelica.Math.Matrices.solve(A,B); //Coe:=fill(2,size(Coe,1)); end Curve_Fitting;

Optimasi Rangka

model Optimasi_Rangka parameter Real xd[:]={564.0e-6,231.0e-6,864.0e-6,684.0e-6,475.0e-6,304.0e-6,171.0e-6,1.2e-3,1.7e-3,111.0e-6,141.0e-6,744.0e-6}; parameter Real yd[size(xd,1)]={5.05298e-5,4.88023e-5,5.036893e-5,5.05333e-5,5.04207e-5,4.96523e-5,4.75e-5,4.97833e-5,4.87359e-5,4.48627e-5,4.64403e-5,5.04956e-5}; parameter Real xlo=111e-6; parameter Real xhi=1.7e-3; parameter Integer N=10; // maximum iteration parameter Real es=0.0001; // maximum error

Real f1[N], f2[N], x1[N], x2[N], ea[N], y[3]; Real xopt, fx; protected Real d, xl, xu, xint, R=(5^(1/2)-1)/2;

algorithm xl := xlo; xu := xhi; y  := Curve_Fitting(xd,yd);

for i in 1:N loop

d:= R*(xu-xl);
x1[i]:=xl+d;
x2[i]:=xu-d;
f1[i]:=y[1]*x1[i]^2+y[2]*x1[i]+y[3];
f2[i]:=y[1]*x2[i]^2+y[2]*x2[i]+y[3];
xint:=xu-xl;

if f1[i]>f2[i] then
  xl:=x2[i];
  xopt:=x1[i];
  fx:=f1[i];
  else
    xu:=x1[i];
    xopt:=x2[i];
    fx:=f2[i];
end if;

ea[i]:=(1-R)*abs((xint)/xopt);
if ea[i]<es then
  break;
end if;

end for; end Optimasi_Rangka;

7. Komputasi & Optimasi

  • Nilai Stress
Stress Faridz.png
  • Nilai Reaction
Reaction Faridz.png
  • Nilai Displacement
Displacement Faridz.png

Elasticity Tetap

Hasil Curve Fitting

Hasil Curve Fitting Elasticity Tetap.png

Maka didapatkan data

Hasil Komputasi Elasticity Tetap.PNG
Elasticity graph.PNG

Kemudian dilakukan Optimasi dengan menggunakan Golden Ratio yang kemudian didapatkan data

Screenshot (914).png

Dapat disimpulkan bahwa area optimum siku untuk rangka sederhana pada soal dengan menggunakan material SS316 adalah 20x20x3mm

Area Tetap

Untuk menentukan material optimum siku dengan dimensi siku 30x30x3mm, dilakukan perhitungan:

Hasil perhitungan area locked.png

Kemudian dilakukan curve fitting terhadap data SF/Cost dan dilakukan optimasi:

Curve-fitting dan optimasi area locked.png Area-Locked Graph.png

Dapat disimpulkan bahwa area optimum siku untuk rangka sederhana pada soal dengan menggunakan dimensi 30x30x3mm adalah SS 304

UAS

615464.jpg
615465.jpg

Model yang digunakan

model UAS_Faridz

   //define initial variable
 parameter Integer Points = size(P, 1);
   //Number of Points
 parameter Integer Trusses = size(C, 1);
   //Number of Trusses
 parameter Real Yield = 214e6;
   //Yield Strength (Pa)
 parameter Real Area = 25;
   //Area L Profile
 parameter Real Elas = 68.9e9;
   //Elasticity Al 6061  (Pa)
   //define connection
 parameter Integer C[:, 2] = [1, 2; 1, 3; 1, 4];
   //define coordinates (please put orderly)
 parameter Real P[:, 6] = [0, 0, 0, 1, 1, 1;          //1
                           6.5, 6.5, 36.5, 1, 1, 1;   //2
                           6.5, 6.5, 36.5, 1, 1, 1;   //3
                           6.5, 6.5, 36.5, 1, 1, 1];  //4
   //define external force (please put orderly)
 parameter Real F[Points * 3] = {0,0,0,0,3708180,0,0,3708180,0,0,3708180,0};
   //solution
 Real displacement[N], reaction[N];
 Real check[3];
 Real stress1[Trusses];
 Real safety[Trusses];
 Real dis[3];
 Real Str[3];

protected

 parameter Integer N = 3 * Points;
 Real q1[3], q2[3], g[N, N], G[N, N], G_star[N, N], id[N, N] = identity(N), cx, cy, cz, L, X[3, 3];
 Real err = 10e-10, ers = 10e-4;

algorithm

   //Creating Global Matrix
 G := id;
 for i in 1:Trusses loop
   for j in 1:3 loop
     q1[j] := P[C[i, 1], j];
     q2[j] := P[C[i, 2], j];
   end for;
   L := Modelica.Math.Vectors.length(q2 - q1);
   cx := (q2[1] - q1[1]) / L;
   cy := (q2[2] - q1[2]) / L;
   cz := (q2[3] - q1[3]) / L;
   X := Area * Elas / L * [cx ^ 2, cx * cy, cx * cz; cy * cx, cy ^ 2, cy * cz; cz * cx, cz * cy, cz ^ 2];
   g := zeros(N, N);
   for m, n in 1:3 loop
     g[3 * (C[i, 1] - 1) + m, 3 * (C[i, 1] - 1) + n] := X[m, n];
     g[3 * (C[i, 2] - 1) + m, 3 * (C[i, 2] - 1) + n] := X[m, n];
     g[3 * (C[i, 2] - 1) + m, 3 * (C[i, 1] - 1) + n] := -X[m, n];
     g[3 * (C[i, 1] - 1) + m, 3 * (C[i, 2] - 1) + n] := -X[m, n];
   end for;
   G_star := G + g;
   G := G_star;
 end for;

//Solving Matrix //Transforming to global matrix //Implementing boundary

 for x in 1:Points loop
   if P[x, 4] <> 0 then
     for a in 1:Points * 3 loop
       G[x * 3 - 2, a] := 0;
       G[x * 3 - 2, x * 3 - 2] := 1;
     end for;
   end if;
   if P[x, 5] <> 0 then
     for a in 1:Points * 3 loop
       G[x * 3 - 1, a] := 0;
       G[x * 3 - 1, x * 3 - 1] := 1;
     end for;
   end if;
   if P[x, 6] <> 0 then
     for a in 1:Points * 3 loop
       G[x * 3, a] := 0;
       G[x * 3, x * 3] := 1;
     end for;
   end if;
 end for;

//Solving displacement

 displacement := Modelica.Math.Matrices.solve(G, F);

//Solving reaction

 reaction := G_star * displacement - F;

//Eliminating float error

 for i in 1:N loop
   reaction[i] := if abs(reaction[i]) <= err then 0 else reaction[i];
   displacement[i] := if abs(displacement[i]) <= err then 0 else displacement[i];
 end for;

//Checking Force

 check[1] := sum({reaction[i] for i in 1:3:N - 2}) + sum({F[i] for i in 1:3:N - 2});
 check[2] := sum({reaction[i] for i in 2:3:N - 1}) + sum({F[i] for i in 2:3:N - 1});
 check[3] := sum({reaction[i] for i in 3:3:N}) + sum({F[i] for i in 3:3:N});
 for i in 1:3 loop
   check[i] := if abs(check[i]) <= ers then 0 else check[i];
 end for;

//Calculating stress in each truss

 for i in 1:Trusses loop
   for j in 1:3 loop
     q1[j] := P[C[i, 1], j];
     q2[j] := P[C[i, 2], j];
     dis[j] := abs(displacement[3 * (C[i, 1] - 1) + j] - displacement[3 * (C[i, 2] - 1) + j]);
   end for;
   L := Modelica.Math.Vectors.length(q2 - q1);
   cx := (q2[1] - q1[1]) / L;
   cy := (q2[2] - q1[2]) / L;
   cz := (q2[3] - q1[3]) / L;
   X := Elas / L * [cx ^ 2, cx * cy, cx * cz; cy * cx, cy ^ 2, cy * cz; cz * cx, cz * cy, cz ^ 2];
   Str := X * dis;
   stress1[i] := Modelica.Math.Vectors.length(Str);
 end for;

//Solving Matrix //Safety factor

 for i in 1:Trusses loop
   if stress1[i] > 0 then
     safety[i] := Yield / stress1[i];
   else
     safety[i] := 0;
   end if;
 end for;

end UAS_Faridz;

Hasil yang didapatkan

Stress

615470.jpg

Reaction

615471.jpg

Displacement

615472.jpg