Kelompok 6

From ccitonlinewiki
Revision as of 10:10, 27 November 2019 by Ronald Galvin (talk | contribs)
Jump to: navigation, search
السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ

Perkenalkan kami dari kelompok 6 kelas Metode Numerik Kelas Reguler-2

Anggota dari kelompok 6 :

1. Geofany Rosady (1706986366)

Geo.jpg


2. Jonathan Surya (1706036210)

3. Ronald Galvin (1806200910)

Pendahuluan

Eliminasi Gauss-Jordan adalah integrasi dari eliminasi Gauss yang hasilnya lebih sederhana lagi. Metodenya adalah dengan meneruskan operasi baris dari eliminasi Gauss sampai menghasilkan matriks yang Eselon-baris. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Pada akhirnya ada segitiga atas/ segitiga bawah seperti:

S0.png

Metode ini digunakan untuk mencari invers dari sebuah matriks. Prosedur umum untuk metode eliminasi Gauss-Jordan ini adalah 1. Ubah sistem persamaan linier yang ingin dihitung menjadi matriks augmentasi. 2. Lakukan operasi baris elementer pada matriks augmentasi (A|b) untuk mengubah matriks.

Misalkan saja: 2X1 + X2 + 4X3 = 8 3X1 + 2X2 + X3 = 10 X1 + 3X2 + 3X3 = 8

Berikut adalah penyelesaian secara matematis :
S1.png
S2.png
S3.png


Video Tugas Ketiga

Video diatas merupakan penjelasan penggunaaan aplikasi metode numerik pada eliminasi Gauss. Algortima dari video diatas akan kami tampilkan dibawah ini:

Ke3.png


Lalu hasil run sebagai berikut:

4.png


Terima Kasih telah membaca blog Wiki kami, jika ingin memberikan pendapat silahkan berkomentar di bawah


Video Tugas Ke-empat

   Tugas keempat adalah mengaplikasikan eliminasi gauss jordan pada penyelesaian soal statistika struktur pada satu dimensi.Salah satu pengaplikasiannya kami mengambil satu contoh yaitu beam yang memiliki 2 tumpuan fix.
  Panjang total beam L  = 9m, Panjang dari A - gaya = 6m ,Panjang dari B - gaya = 3m, Gaya yang diberikan   = 2000N

berikut gambaran soalnya

T04 6.png



berikut contoh penyelesaian manualnya

T042.jpg


berikut penyelesaian Pythonnya


Video Tugas Ke-lima

metode Runge-Kutta adalah keluarga metode iteratif implisit dan eksplisit , yang mencakup rutin terkenal yang disebut Metode Euler , yang digunakan dalam diskritisasi temporal untuk solusi perkiraan persamaan diferensial biasa . [1] Metode ini dikembangkan sekitar tahun 1900 oleh matematikawan Jerman Carl Runge dan Wilhelm Kutta

masalah nilai awal ditentukan sebagai berikut:

21.png
22.png

Berikut hasil pembuatan presentasi dari kelompok kami:

PPT Tugas 5

Video diatas merupakan contoh penyelesaian soal statistika struktur dengan eliminasi gauss jordan



Tugas ke-7

Koefisien drag (Cd) adalah bilangan yang menunjukkan besar kecilnya tahanan fluida yang diterima oleh suatu benda. Harga koefisien drag yang kecil menunjukkan hambatan fluida yang diterima benda saat berjalan adalah kecil, dan begitu juga sebaliknya.

Koefisien seret didefinisikan sebagai:

                            Reger.png    

Fd = gaya drag (definisi komponen gaya dalam arah kecepatan aliran) p (rho) = massa jenis fluida v = kecepatan relatif dari objek untuk cairan dan A = acuan daerah aliran

Menghitung Drag Coef. dari mobil menggunakan CFDsof

CFDSOF1.png
CFDSOF2.jpg
CFDSOF3.jpg
CFDSOF4.jpg


Tugas ke-8

Airfoil pada sudut +15 derajat

Plus151.png
Plus152.png


Airfoil pada sudut -15 derajat

Minus151.png
Minus152.png

Airfoil pada sudut +30 derajat

Plus301.png
Plus302.png


Jonathan.Surya

62 months ago
Score 3+
tampilan videonya menarik

Geofany.rosady

60 months ago
Score 0+
tampilan Kelompoknya menarik
Add your comment
ccitonlinewiki welcomes all comments. If you do not want to be anonymous, register or log in. It is free.